The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using dail...Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.展开更多
Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection b...Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.展开更多
Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability i...Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability in parental inbreds is needed for developing such high-yielding hybrids.Consequently,this study aimed at evaluating parental genetic diversity employing simple sequence repeats(SSR)markers,estimating effects of general(GCA)and specific(SCA)combining abilities for grain yield and yield contributing characters,identifying high yielding hybrids,and evaluating the association of SCA effects and performance of hybrids with genetic distance.Half-diallel mating scheme was utilized to develop 21 F_(1) hybrids from seven diverse maize inbred lines.The F_(1) hybrids along with check hybrid(SC-10),were investigated in a field trial over two growing seasons under arid conditions.The assessed F_(1) hybrids displayed significant genetic variations across all recorded traits.The inbreds P_(1) and P_(3) were detected as effective combiners to develop early maturing hybrids.Additionally,P_(3) and P_(4) were recognized as better combiners for improving grain yield and yield attributed characters.The hybrids P_(1)×P_(5) and P_(4)×P_(7) displayed significant SCA effects coupled with favorable agronomic performance.These hybrids are recommended for further evaluation and release as variety for arid environments to increase total maize production and contribute to food security.The alleles per locus differed between 2 and 5,with average of 3.5 alleles/locus.The polymorphic information content(PIC)altered between 0.21 to 0.74,with a mean of 0.56.Unweighted neighbor-joining tree grouped the inbred lines into three clusters,providing a valuable tool to decrease the crosses needed to be assessed in the trial field.Parental genetic distance varied from 0.63 to 0.90,averaging 0.79.The relationship between genetic diversity assessed through SSR markers and SCA effects was insignificant for all considered traits.Otherwise,SCA demonstrated a significant correlation with hybrid performance,suggesting that SCA serves as a reliable predictor for hybrid performance.The assessed maize inbred lines and developed hybrids revealed substantial genetic variability,offering valuable resources for enhancing maize productivity under arid conditions.The identified promising inbred lines(P_(1),P_(3),and P_(4))might be regarded as effective combiners for developing early-maturing genotypes and excellent combiners for enhancing yield attributes.Notably,the developed hybrids P_(1)×P_(5) and P_(4)×P_(7) possessed significant SCA alongside superior yield traits.SCA demonstrated a significant correlation with hybrid performance,suggesting its potential as a reliable predictor for the performance of developed hybrids.展开更多
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARI...SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARID1A as a tumor suppressor because AR1D1A/BAF250a (SWI1) subunit of the SWI/SNF chromatin-remodeling complex has emerged as recurrently mutated in a broad array of tumor types. But the crystal structure of SWI1 has not been solved as yet. Using docking and molecular dynamics, we predicted the DNA interaction pattern of human SWI1 ARID and made comparisons with the other two representative ARID family members, human Mrf-2 ARID and Drosophila Dri ARID. Dynamic results revealed that the N-terminal and loop L1 of SWI1 ARID bound with the DNA major groove, while the loop L2 and helix H6 bound with the minor groove. Moreover, it was found that SWI1 ARID bound with DNA apparently in a sequence-nonspecific manner. It was concluded that SWI1 ARID can form stable complex with sequence-nonspecific DNA segment comparing to Mrf-2 ARID/DNA and Dri ARID/DNA sequence-specific complexes.展开更多
Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetati...Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetation dynamics were analyzed. Once sand barrier and artificial vegetation have stabilized the surface of the sifting sand, could form aeolian deposition crust and then evolve into algae_dominated crust. Such processes result from the interactions of physical effects of atmospheric dust and silt deposition on sand surface, sinking and raindrop impact, and soil microorganism activities. Under the condition of less than 200 mm precipitation, the presence of microbiotic crust changes the soil hydraulic conductivity, alters the temporal and spatial distribution of the limited precipitation in sand layer and leads to the decline of deep_rooted shrubs. The development of microbiotic crust and subsurface soil affects the plant growth and seed rain distribution, as a result, the diversity of plant species gradually tend to become saturated and finally affects the vegetation stability.展开更多
Pollen analysis of 30 modem water samples from the Shivang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to c...Pollen analysis of 30 modem water samples from the Shivang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to carry pollen and spores, and to assess the contribution of the water-borne pollen to pollen assemblages in lake sediments at the end of the river system. Results indicate the pollen assemblages in water samples consist of both local and upland pollen. Percentages of upland pollen reach 30% - 60%, and pollen assemblages in water samples do not indicate the nature of local vegetation at the sampling sites. Fluvial currents have the capacity to transport large quantities of pollen long distances, and the contribution of this fluvial transported pollen is relatively high, For example, percentages of Picea Dietr. pollen in water samples at sampling sites 130 km and 145 km away from Picea forests reach 16.5% and 7.7%, respectively. Fluvial pollen transport occurs primarily during flood periods, and pollen concentrations from the flood samples are 17.1 - 12.5 times those from normal fluvial flow. Reservoirs affect pollen transportation since pollen is deposited at reservoir inlets and pollen concentrations are much reduced at reservoir outlets. Human activity can thus change natural features of pollen transportation and deposition. The main factors influencing pollen concentrations and assemblages are sampling time, sampling location, and rainfall intensity.展开更多
[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B o...[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures. [ Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height, leaf area and number of green leaves under influences of different UV-B radiation. [ Result] In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influ- enced and with the increase of ultraviolet radiation-B, the yield declined dramatically. [ Concluslonl The result of this experiment would be good for maize production in arid regions of middle-high elevation.展开更多
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
基金funded by the National Natural Science Foundation of China(42171145,42171147)the Gansu Provincial Science and Technology Program(22ZD6FA005)the Key Talent Program of Gansu Province.
文摘Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.
基金supported the National Natural Science Foundation of China(42071371)the National Key R&D Program of China(2018YFB0505400).
文摘Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R318)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/342/45supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU241870).
文摘Developing high-yield maize hybrids is critical for sustaining maize production,especially in the face of rapid climate changes and the growing global population.Exploring the genetic diversity and combining ability in parental inbreds is needed for developing such high-yielding hybrids.Consequently,this study aimed at evaluating parental genetic diversity employing simple sequence repeats(SSR)markers,estimating effects of general(GCA)and specific(SCA)combining abilities for grain yield and yield contributing characters,identifying high yielding hybrids,and evaluating the association of SCA effects and performance of hybrids with genetic distance.Half-diallel mating scheme was utilized to develop 21 F_(1) hybrids from seven diverse maize inbred lines.The F_(1) hybrids along with check hybrid(SC-10),were investigated in a field trial over two growing seasons under arid conditions.The assessed F_(1) hybrids displayed significant genetic variations across all recorded traits.The inbreds P_(1) and P_(3) were detected as effective combiners to develop early maturing hybrids.Additionally,P_(3) and P_(4) were recognized as better combiners for improving grain yield and yield attributed characters.The hybrids P_(1)×P_(5) and P_(4)×P_(7) displayed significant SCA effects coupled with favorable agronomic performance.These hybrids are recommended for further evaluation and release as variety for arid environments to increase total maize production and contribute to food security.The alleles per locus differed between 2 and 5,with average of 3.5 alleles/locus.The polymorphic information content(PIC)altered between 0.21 to 0.74,with a mean of 0.56.Unweighted neighbor-joining tree grouped the inbred lines into three clusters,providing a valuable tool to decrease the crosses needed to be assessed in the trial field.Parental genetic distance varied from 0.63 to 0.90,averaging 0.79.The relationship between genetic diversity assessed through SSR markers and SCA effects was insignificant for all considered traits.Otherwise,SCA demonstrated a significant correlation with hybrid performance,suggesting that SCA serves as a reliable predictor for hybrid performance.The assessed maize inbred lines and developed hybrids revealed substantial genetic variability,offering valuable resources for enhancing maize productivity under arid conditions.The identified promising inbred lines(P_(1),P_(3),and P_(4))might be regarded as effective combiners for developing early-maturing genotypes and excellent combiners for enhancing yield attributes.Notably,the developed hybrids P_(1)×P_(5) and P_(4)×P_(7) possessed significant SCA alongside superior yield traits.SCA demonstrated a significant correlation with hybrid performance,suggesting its potential as a reliable predictor for the performance of developed hybrids.
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
基金supported by the College Scientific and Technological Innovation Project of Huazhong University of Science and Technology(No.15A263)
文摘SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARID1A as a tumor suppressor because AR1D1A/BAF250a (SWI1) subunit of the SWI/SNF chromatin-remodeling complex has emerged as recurrently mutated in a broad array of tumor types. But the crystal structure of SWI1 has not been solved as yet. Using docking and molecular dynamics, we predicted the DNA interaction pattern of human SWI1 ARID and made comparisons with the other two representative ARID family members, human Mrf-2 ARID and Drosophila Dri ARID. Dynamic results revealed that the N-terminal and loop L1 of SWI1 ARID bound with the DNA major groove, while the loop L2 and helix H6 bound with the minor groove. Moreover, it was found that SWI1 ARID bound with DNA apparently in a sequence-nonspecific manner. It was concluded that SWI1 ARID can form stable complex with sequence-nonspecific DNA segment comparing to Mrf-2 ARID/DNA and Dri ARID/DNA sequence-specific complexes.
文摘Based on secular fixed_site data in the artificial sand_fixing vegetation district at the southeast fringe of the Tengger Desert, the formative characteristics of soil microbiotic crusts and its influences on vegetation dynamics were analyzed. Once sand barrier and artificial vegetation have stabilized the surface of the sifting sand, could form aeolian deposition crust and then evolve into algae_dominated crust. Such processes result from the interactions of physical effects of atmospheric dust and silt deposition on sand surface, sinking and raindrop impact, and soil microorganism activities. Under the condition of less than 200 mm precipitation, the presence of microbiotic crust changes the soil hydraulic conductivity, alters the temporal and spatial distribution of the limited precipitation in sand layer and leads to the decline of deep_rooted shrubs. The development of microbiotic crust and subsurface soil affects the plant growth and seed rain distribution, as a result, the diversity of plant species gradually tend to become saturated and finally affects the vegetation stability.
文摘Pollen analysis of 30 modem water samples from the Shivang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to carry pollen and spores, and to assess the contribution of the water-borne pollen to pollen assemblages in lake sediments at the end of the river system. Results indicate the pollen assemblages in water samples consist of both local and upland pollen. Percentages of upland pollen reach 30% - 60%, and pollen assemblages in water samples do not indicate the nature of local vegetation at the sampling sites. Fluvial currents have the capacity to transport large quantities of pollen long distances, and the contribution of this fluvial transported pollen is relatively high, For example, percentages of Picea Dietr. pollen in water samples at sampling sites 130 km and 145 km away from Picea forests reach 16.5% and 7.7%, respectively. Fluvial pollen transport occurs primarily during flood periods, and pollen concentrations from the flood samples are 17.1 - 12.5 times those from normal fluvial flow. Reservoirs affect pollen transportation since pollen is deposited at reservoir inlets and pollen concentrations are much reduced at reservoir outlets. Human activity can thus change natural features of pollen transportation and deposition. The main factors influencing pollen concentrations and assemblages are sampling time, sampling location, and rainfall intensity.
基金Supported by Natural Science Foundation of Ningxia Autonomous Re-gion(A1012)~~
文摘[Objective] The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures. [ Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height, leaf area and number of green leaves under influences of different UV-B radiation. [ Result] In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influ- enced and with the increase of ultraviolet radiation-B, the yield declined dramatically. [ Concluslonl The result of this experiment would be good for maize production in arid regions of middle-high elevation.