Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg...Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.展开更多
Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran...Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.展开更多
Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been success...Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.展开更多
Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values ...Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values at specific stations is key for environmental and agricultural decision making. This research developed Autoregressive Integrated Moving Average (ARIMA) models for selected stations with Integrated component and Autoregressive Moving Average (ARMA) for selected stations without Integrated component at Louisiana State. The ARIMA module is represented as ARIMA(p, d, q)(P,D,Q). The selected lag order for the Autoregressive (AR) component is represented with p and P for seasonal AR component, while the integrated form (number of times data were differenced) is d and D for seasonal differencing, and the Moving Average (MA) lag order is q and Q for seasonal MA component. Data from 1950 to 2020 were employed in this research. Results of the analysis indicated that Baton Rouge (ARIMA (0,1,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Abbeville (ARMA (0,0,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Monroe Regional (ARMA (0,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Airport (ARMA (1,0,0) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Alexandria (ARMA (1,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Logansport (ARIMA (0,1,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Audubon (ARMA (1,0,0) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Lake Charles Airport (ARMA (2,0,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">) are the best ARIMA models for predicting precipitation in Louisiana. The models were used to predict the average monthly rainfall at each station. The highest precipitation observed in Louisiana was recorded in 1991. The Precipitation in Louisiana fluctuated over the years but has adopted a decreasing trend from the year 2000 to 2020. It was recommended that the government, researchers, and individuals take note of these models to make future plans to help increase the production of agricultural commodities and prevent destructions caused by excessive precipitation.展开更多
Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate mode...Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market.展开更多
To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices...To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices were obtained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total of 2713 observations were explored and were divided into two portions. The first which ranged from January 3, 2006 to November 24, 2016, comprising 2690 observations, was used for model formulation. The second portion which ranged from November 25, 2016 to December 30, 2016, consisting of 23 observations, was used for out-of-sample forecasting performance evaluation. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were applied on the returns series with respect to normal and student-t distributions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum predictive errors throughout-of-sample approach outperformed ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model chosen through in-sample approach. Therefore, it could be deduced that out-of-sample model selection approach was suitable for selecting models with improved forecasting accuracies and performances.展开更多
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte...This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.展开更多
文摘Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.
文摘Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran.
文摘Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.
文摘Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values at specific stations is key for environmental and agricultural decision making. This research developed Autoregressive Integrated Moving Average (ARIMA) models for selected stations with Integrated component and Autoregressive Moving Average (ARMA) for selected stations without Integrated component at Louisiana State. The ARIMA module is represented as ARIMA(p, d, q)(P,D,Q). The selected lag order for the Autoregressive (AR) component is represented with p and P for seasonal AR component, while the integrated form (number of times data were differenced) is d and D for seasonal differencing, and the Moving Average (MA) lag order is q and Q for seasonal MA component. Data from 1950 to 2020 were employed in this research. Results of the analysis indicated that Baton Rouge (ARIMA (0,1,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Abbeville (ARMA (0,0,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Monroe Regional (ARMA (0,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Airport (ARMA (1,0,0) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Alexandria (ARMA (1,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Logansport (ARIMA (0,1,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Audubon (ARMA (1,0,0) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Lake Charles Airport (ARMA (2,0,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">) are the best ARIMA models for predicting precipitation in Louisiana. The models were used to predict the average monthly rainfall at each station. The highest precipitation observed in Louisiana was recorded in 1991. The Precipitation in Louisiana fluctuated over the years but has adopted a decreasing trend from the year 2000 to 2020. It was recommended that the government, researchers, and individuals take note of these models to make future plans to help increase the production of agricultural commodities and prevent destructions caused by excessive precipitation.
文摘Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market.
文摘To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices were obtained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total of 2713 observations were explored and were divided into two portions. The first which ranged from January 3, 2006 to November 24, 2016, comprising 2690 observations, was used for model formulation. The second portion which ranged from November 25, 2016 to December 30, 2016, consisting of 23 observations, was used for out-of-sample forecasting performance evaluation. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were applied on the returns series with respect to normal and student-t distributions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum predictive errors throughout-of-sample approach outperformed ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model chosen through in-sample approach. Therefore, it could be deduced that out-of-sample model selection approach was suitable for selecting models with improved forecasting accuracies and performances.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)
文摘This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.