期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
ARIMA乘法季节模型的R软件实现 被引量:5
1
作者 李亚伟 刘玲 +1 位作者 宋士勋 路凤 《环境卫生学杂志》 2018年第4期345-349,共5页
目的探讨ARIMA乘法季节模型的R软件实现方法,为模型的利用提供方法参考。方法利用美国芝加哥市1987—2000年大气污染物臭氧(O_3)浓度数据建立ARIMA乘法季节模型,并进行预测,比较预测值和观察值的差异。结果 ARIMA乘法季节模型在R软件中... 目的探讨ARIMA乘法季节模型的R软件实现方法,为模型的利用提供方法参考。方法利用美国芝加哥市1987—2000年大气污染物臭氧(O_3)浓度数据建立ARIMA乘法季节模型,并进行预测,比较预测值和观察值的差异。结果 ARIMA乘法季节模型在R软件中方便实现,模型预测值和观察值的平均相对误差为5.6%。结论 R软件有相对丰富的软件包可以实现ARIMA乘法季节模型,使用者可以方便快捷地实现分析需求。 展开更多
关键词 arima乘法季节模型 大气污染物 预测 R软件实现
下载PDF
缺失数据下空气质量预测的ARIMA乘法季节模型 被引量:2
2
作者 田文婷 宇世航 《齐齐哈尔大学学报(自然科学版)》 2022年第4期83-89,共7页
以AQI指数作为评判空气质量状况的标准进行探究,对存在缺失值的AQI指数进行填充,经探究发现,填充后的AQI指数存在明显季节特征,提出在原ARIMA模型上加入季节特征,建立ARIMA乘法季节模型。首先选东北四个城市进行实证分析,用均值法和缺... 以AQI指数作为评判空气质量状况的标准进行探究,对存在缺失值的AQI指数进行填充,经探究发现,填充后的AQI指数存在明显季节特征,提出在原ARIMA模型上加入季节特征,建立ARIMA乘法季节模型。首先选东北四个城市进行实证分析,用均值法和缺失森林法对缺失数据进行填充,依据存在的季节特征分别建立适当的ARIMA乘法季节模型,对未来12个月空气质量进行预测并拟合未来变化趋势,将预测的数据与真实数据进行对比,得出ARIMA乘法季节模型在预测空气质量时优于单纯的ARIMA模型,使用缺失森林填充后建立的ARIMA乘法季节模型优于用均值法填充。最后,确定基于缺失森林填充的缺失数据建立的ARIMA乘法季节模型为较优的预测模型。 展开更多
关键词 AQI指数 缺失森林 季节 arima乘法季节模型
下载PDF
基于季节ARIMA模型对某三级综合性医院门诊量的预测研究
3
作者 陈文娟 林建潮 《中国医院统计》 2024年第3期185-188,共4页
目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过... 目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过对比门诊量实测值,评价季节ARIMA模型预测门诊人次的精度。结果 该综合性医院门诊量呈现逐年上升趋势,并呈现周期性波动的特征。拟合的最优季节ARIMA模型为ARIMA(0,1,1)(1,0,1)12,BIC(贝叶斯信息准则)为5.273,MAPE(平均绝对百分误差)为14.265,R2(模块决定系数)为0.408,总体相对误差为1.83%,预测结果良好。结论 季节ARIMA模型较好地模拟了该三级综合性医院门诊量在时间序列上的变化趋势,为该院门诊量的短期预测提供理论依据。 展开更多
关键词 季节arima 门诊人次 时间序列分析 预测模型
下载PDF
基于季节性ARIMA模型的短时交通流预测方法研究
4
作者 俞乐澜 邵梓轩 +1 位作者 徐程 李涛 《交通世界》 2024年第25期2-5,共4页
综合道路特点、行驶时间和车辆的特征等信息,采用时间差值法筛除无效数据,剔除运营车数据;在通过序列分解与ADF-1平稳性检验后,提出基于季节性ARIMA模型的短时交通流预测技术,以探究该模型下车流量预测精度达到最佳预测效果时的最优采... 综合道路特点、行驶时间和车辆的特征等信息,采用时间差值法筛除无效数据,剔除运营车数据;在通过序列分解与ADF-1平稳性检验后,提出基于季节性ARIMA模型的短时交通流预测技术,以探究该模型下车流量预测精度达到最佳预测效果时的最优采样间隔;采用AIC准则对参数寻优定阶,ADF检验和差分分析选择最优的差分阶层;为确保模型的可靠性,使用Ljung-Box Q检验进行白噪声检验。结果表明,时间间隔为15 min的车流量统计模型SARIMA(1,1,2)×(2,0,0)4在预测精度和稳定性方面均优于其他时间间隔和传统的ARIMA模型。同时,该方法也具有一定的通用性,可以应用于其他领域的短时流量预测。 展开更多
关键词 短时交通流预测 季节arima模型 ADF-1检验 Ljung-Box Q检验
下载PDF
基于配对检验的ARIMA模型在我国甲肝发病数预测中的应用
5
作者 丁勇 张蓓蓓 吴静 《南京医科大学学报(自然科学版)》 CAS 北大核心 2024年第10期1456-1461,共6页
目的:探讨基于配对检验的求和自回归移动平均(autoregressive integrated moving average,ARIMA)模型在我国甲肝发病预测中的应用,提出时间序列模型预测效果评价的新思路与方法。方法:根据2004年1月—2021年12月我国甲肝传染病月发病数... 目的:探讨基于配对检验的求和自回归移动平均(autoregressive integrated moving average,ARIMA)模型在我国甲肝发病预测中的应用,提出时间序列模型预测效果评价的新思路与方法。方法:根据2004年1月—2021年12月我国甲肝传染病月发病数建立ARIMA模型,对2022年1—8月的甲肝月发病数进行预测,通过配对t检验和误差分析评估该模型的预测效果。结果:配对t检验结果显示,ARIMA(1,1,0)(0,1,1)12模型预测的甲肝月发病数与实际月发病数差异无统计学意义(P>0.05),说明模型有较好的预测能力,预测结果的相对误差平均值为3.86%,标准差为3.25%。结论:ARIMA乘积季节模型能够较准确地预测我国甲肝的发病趋势;配对检验为时间序列模型预测效果的评价提供了客观评价依据,较好地解决了时间序列模型预测效果的评价问题。 展开更多
关键词 配对检验 甲型肝炎 arima乘积季节模型 预测
下载PDF
基于ARIMA模型的地区国内旅游人数研究——以云南省为例
6
作者 周子渊 《统计学与应用》 2024年第3期914-922,共9页
云南旅游资源丰富且得天独厚,经过多年的发展云南旅游业已成为国民经济中的支柱产业,作为国内主要目的地,2023年,云南国内旅游人数已突破10亿人次,当前正值启动“十五五”规划的起步阶段,如何科学预测云南国内旅游人数趋势,是一项重要... 云南旅游资源丰富且得天独厚,经过多年的发展云南旅游业已成为国民经济中的支柱产业,作为国内主要目的地,2023年,云南国内旅游人数已突破10亿人次,当前正值启动“十五五”规划的起步阶段,如何科学预测云南国内旅游人数趋势,是一项重要课题。本文通过对2010~2023年云南省国内游客季度数据的研究,运用时间序列模型中ARIMA模型进行拟合,选取拟合模型中最优的模型ARIMA (2, 1, 3),得到拟合函数,并预测未来3年云南省国内旅游人数季度趋势,以此给予政府在接下来经济规划中提供相关建议。 展开更多
关键词 国内旅游人数 arima 季节趋势模型 云南省
下载PDF
基于乘法季节ARIMA模型的农村居民人均收入的短期预测 被引量:3
7
作者 谭利平 王斌会 《统计与决策》 CSSCI 北大核心 2016年第9期96-98,共3页
文章采用我国近10年的农村居民人均现金收入季度数据进行乘法季节ARIMA建模,发现ARIMA(0,1,0)×(2,1,0)4模型能够很好的拟合我国农村居民人均收入,并用该模型进行预测,预测结果表明:2014年前两季度的预测值与实际值的相对误差率非常... 文章采用我国近10年的农村居民人均现金收入季度数据进行乘法季节ARIMA建模,发现ARIMA(0,1,0)×(2,1,0)4模型能够很好的拟合我国农村居民人均收入,并用该模型进行预测,预测结果表明:2014年前两季度的预测值与实际值的相对误差率非常小,说明模型拟合的效果很好;同时预测结果也发现农村居民人均现金收入呈现稳定增长的趋势,且存在明显的季节周期性。 展开更多
关键词 乘法季节arima模型 农村居民人均收入 预测
下载PDF
基于乘法季节ARIMA模型的铁路旅客运输量的分析与预测
8
作者 敬林 《科技视界》 2016年第20期160-160,共1页
随着我国高铁客运市场的快速增长,中国铁路公司及其相关企业有着更大的发展空间。对铁路旅客运输量作出准确的预测是相关企业和部门准确把握行业发展趋势,做出合理决策与调度的前提。由于铁路旅客运输量具有较强的趋势性和季节性,本文... 随着我国高铁客运市场的快速增长,中国铁路公司及其相关企业有着更大的发展空间。对铁路旅客运输量作出准确的预测是相关企业和部门准确把握行业发展趋势,做出合理决策与调度的前提。由于铁路旅客运输量具有较强的趋势性和季节性,本文运用非平稳乘法季节ARIMA模型对我国2005—2015年铁路旅客运输量的月度数据进行拟合,建立了ARIMA(0,1,1)*(0,1,1)模型,在此基础上预测2015年的月度旅客运输量,模型总体效果较好。 展开更多
关键词 季节arima模型 模型拟合 铁路旅客运输量
下载PDF
ARIMA乘积季节模型及其在传染病发病预测中的应用 被引量:95
9
作者 彭志行 鲍昌俊 +4 位作者 赵杨 易洪刚 唐少文 于浩 陈峰 《数理统计与管理》 CSSCI 北大核心 2008年第2期362-368,共7页
本文研究乘积季节模型在传染病发病情况预测中的应用,并探讨提高模型准确性和实用性的途径.以1980年1月至2000年7月江苏省肾综合征出血热发病资料建立模型,以2000年的发病资料作为模型预测效果的考核样本.首先采用差分方法对序列资料进... 本文研究乘积季节模型在传染病发病情况预测中的应用,并探讨提高模型准确性和实用性的途径.以1980年1月至2000年7月江苏省肾综合征出血热发病资料建立模型,以2000年的发病资料作为模型预测效果的考核样本.首先采用差分方法对序列资料进行平稳化,然后进行定阶并估计参数,建立乘积季节模型,最后对预测结果进行检验和分析.从而更好地掌握未来疫情动态发展趋势.检验结果表明,用乘积季节模型对肾综合征出血热月发病情况的拟合结果满意,预测效果良好. 展开更多
关键词 时间序列 arima模型 乘积季节模型 传染病 预测
下载PDF
交通流的季节ARIMA模型与预报 被引量:17
10
作者 张辉 刘嘉焜 +1 位作者 柳湘月 郭晓泽 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2005年第9期838-841,共4页
使用季节ARIMA模型对交通流进行建模及预报为高速公路交通状况分析、道路设施建设、公路效益评价及控制策略设计等提供了一种可靠的方法和途径.介绍了具有周期的季节ARIMA模型的一般表达方式,并提供了使用这一模型进行建模和预报的一般... 使用季节ARIMA模型对交通流进行建模及预报为高速公路交通状况分析、道路设施建设、公路效益评价及控制策略设计等提供了一种可靠的方法和途径.介绍了具有周期的季节ARIMA模型的一般表达方式,并提供了使用这一模型进行建模和预报的一般过程.最后以某高速公路的实测数据为例,进行实证分析,得到了72步的长期预报结果,其相对误差为0. 展开更多
关键词 交通流 季节arima模型 预报
下载PDF
ARIMA乘积季节模型在我国甲肝发病预测中的应用 被引量:17
11
作者 王超 丁勇 +1 位作者 陆群 吴静 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期75-79,共5页
目的:应用求和自回归移动平均模型(ARIMA)乘积季节模型对我国病毒性甲型肝炎进行预测分析,为甲型肝炎的防治提供决策依据。方法:对1994~2012年我国甲型肝炎月发病数的历史疫情数据建立ARIMA乘积季节模型,应用Eviews 6.0软件进行模... 目的:应用求和自回归移动平均模型(ARIMA)乘积季节模型对我国病毒性甲型肝炎进行预测分析,为甲型肝炎的防治提供决策依据。方法:对1994~2012年我国甲型肝炎月发病数的历史疫情数据建立ARIMA乘积季节模型,应用Eviews 6.0软件进行模型拟合,对2013年上半年甲型肝炎的月发病数进行预测,并用实际数据评估模型预测效果。结果:ARIMA(1,1,0)(2,1,2)12模型较好地拟合了既往甲肝的实际发病序列,也获得了较好的预测效果。结论:ARIMA模型能够较好地模拟我国甲型肝炎的发病趋势,预测效果良好,可为甲肝疫情的防控提供一定的科学数据。 展开更多
关键词 arima乘积季节模型 时间序列 甲肝 预测
下载PDF
基于季节ARIMA模型的公路交通量预测 被引量:27
12
作者 童明荣 薛恒新 林琳 《公路交通科技》 CAS CSCD 北大核心 2008年第1期124-128,共5页
为了提高公路交通量季节性预测的精度,在介绍一般ARIMA模型的基础上,推导出一种具有周期的季节ARI-MA模型的一般表达式,以及使用这种模型进行建模和预报的一般过程。在实证分析中,先用傅立叶周期分析法检验时间序列的周期性并求出周期长... 为了提高公路交通量季节性预测的精度,在介绍一般ARIMA模型的基础上,推导出一种具有周期的季节ARI-MA模型的一般表达式,以及使用这种模型进行建模和预报的一般过程。在实证分析中,先用傅立叶周期分析法检验时间序列的周期性并求出周期长度,然后用Eviews软件对时间序列作平稳性检验以及实现模型的识别、建立、选择与预测过程。与三个常用季节预测模型:分组回归模型、可变季节指数预测模型和季节周期回归模型相比,季节ARIMA模型的预测精度最高。研究结果对于更为科学准确地预测公路交通量具有一定意义。 展开更多
关键词 交通工程 交通量 季节arima模型 预测
下载PDF
基于季节ARIMA模型的电力负荷建模与预报 被引量:16
13
作者 安德洪 柳湘月 +1 位作者 刘嘉焜 许树荆 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2004年第2期184-187,共4页
电力负荷是影响电网寿命和可靠度的一个重要因素.将季节ARIMA模型引入电力负荷的建模及预报,为电力资源分配的宏观调控及电网改造提供了一种可靠的方法和途径.文中用频谱分析的方法检验电力负荷的季节性并求出一个周期;介绍了具有一个... 电力负荷是影响电网寿命和可靠度的一个重要因素.将季节ARIMA模型引入电力负荷的建模及预报,为电力资源分配的宏观调控及电网改造提供了一种可靠的方法和途径.文中用频谱分析的方法检验电力负荷的季节性并求出一个周期;介绍了具有一个周期的季节ARIMA模型的一般表达方式,并给出进行建模及预报的一般过程.以天津市华苑小区的电力负荷为例,进行了季节ARIMA模型的建模及预报. 展开更多
关键词 季节arima模型 电力负荷 预报 建模
下载PDF
2004-2015年中国狂犬病发病数据ARIMA乘积季节模型的建立及预测 被引量:40
14
作者 孟凡东 吴迪 隋承光 《中国卫生统计》 CSCD 北大核心 2016年第3期389-391,395,共4页
目的了解我国大陆地区2004-2015年狂犬病的发病情况,建立狂犬病发病的时间序列模型,利用模型进行短期预测,为狂犬病的预防和控制提供参考。方法通过查阅2004-2015年每月的《中华人民共和国卫生和计划生育委员会公报》,获得狂犬病发病的... 目的了解我国大陆地区2004-2015年狂犬病的发病情况,建立狂犬病发病的时间序列模型,利用模型进行短期预测,为狂犬病的预防和控制提供参考。方法通过查阅2004-2015年每月的《中华人民共和国卫生和计划生育委员会公报》,获得狂犬病发病的月统计数据,利用2004-2014年的数据建立ARIMA乘积季节模型,并利用建立的模型预测2015年数据,与实际发病数据比较。结果中国2004-2015年总计报告狂犬病25561例,年平均发病率为0.1592/10万,总计报告死亡病例22196例,年平均死亡率为0.1383/10万,2004年-2007年,狂犬病的发病人数和死亡人数逐年上升,2008年至2015年,持续下降。狂犬病具有一定的季节趋势,其中夏秋季节报告发病人数较多,而冬春季节发病人数较少。根据2004-2014年发病资料建立的最优时间序列模型为ARIMA(0,1,1)(0,1,1)12,模型预测2015年发病人数为764,相对误差7.73%。结论我国大陆地区狂犬病发病在2007年达到峰值之后,之后年发病率持续降低。ARIMA乘积季节模型能很好地拟合狂犬病发病的长期趋势和季节趋势,回代拟合和短期预测效果较理想。 展开更多
关键词 时间序列 arima乘积季节模型 狂犬病
下载PDF
基于ARIMA乘积季节模型的新疆喀什百日咳流行趋势分析 被引量:10
15
作者 陈佳 谢娜 +2 位作者 吴秀峰 王凯 张学良 《新疆医科大学学报》 CAS 2017年第3期380-384,共5页
目的采用时间序列分析方法建立ARIMA乘积季节模型,拟合具有趋势性和季节性的2008-2015年新疆喀什地区百日咳的每月新发数量并作短期预测,为百日咳的预防与控制提供决策依据。方法以百日咳的每月新发病数为原始序列,用差分和季节差分方... 目的采用时间序列分析方法建立ARIMA乘积季节模型,拟合具有趋势性和季节性的2008-2015年新疆喀什地区百日咳的每月新发数量并作短期预测,为百日咳的预防与控制提供决策依据。方法以百日咳的每月新发病数为原始序列,用差分和季节差分方法对序列做平稳化操作,用具有季节性的自回归移动平均(ARIMA(p,d,q)(P,D,Q)s)模型拟合序列,根据ACF和PACF图对模型定阶并估计参数,再对模型及其参数进行显著性检验,应用残差和AIC和SBC进行评价,建立最优ARIMA乘积季节模型。结果用ARIMA(2,1,2)(0,1,1)_(12)模型模拟2008年1月-2015年6月百日咳每月新发数量,模拟的MAPE=52.05,值稍偏大,但在可接受的范围内。再用该模型预测出2015年7-12月的百日咳每月新发数量,MAPE=18.05,模型预测效果较好。最后用该模型预测2016年的百日咳每月新发病数,发现2016年新疆喀什百日咳新发病数仍处于较高水平,最大值出现在8月,新发病数为87(28,146)。结论 ARIMA(2,1,2)(0,1,1)_(12)模型可用于拟合并且短期预测新疆喀什地区百日咳新发数量,为相关政府部门提供可靠信息。 展开更多
关键词 百日咳 arima乘积季节模型 拟合 预测
下载PDF
基于残差修正的ARIMA-BP组合模型在中国戊型肝炎发病预测中的应用 被引量:1
16
作者 张蓓蓓 《蚌埠医学院学报》 CAS 2023年第5期652-655,660,共5页
目的:探讨基于残差修正的ARIMA-BP组合模型在中国戊型肝炎传染病流行趋势预测中的作用。方法:对2004-2017年中国戊型肝炎统计数据采用SPSS软件分别建立ARIMA和ARIMA-BP模型,将2018年1-12月戊肝数据作为对比值,对模型的预测效果进行对比... 目的:探讨基于残差修正的ARIMA-BP组合模型在中国戊型肝炎传染病流行趋势预测中的作用。方法:对2004-2017年中国戊型肝炎统计数据采用SPSS软件分别建立ARIMA和ARIMA-BP模型,将2018年1-12月戊肝数据作为对比值,对模型的预测效果进行对比分析。结果:2种模型的预测结果评价指标中,ARIMA-BP组合模型的E、ER、MAE、MSE、MAPE指标整体上均小于ARIMA模型。结论:ARIMA-BP组合模型的预测效果优于ARIMA模型,可用于我国戊型肝炎发病趋势的早期预测。 展开更多
关键词 戊型肝炎 arima乘积季节模型 BP神经网络 组合模型 预测
下载PDF
时间序列资料ARIMA季节乘积模型及其应用 被引量:81
17
作者 张蔚 张彦琦 杨旭 《第三军医大学学报》 CAS CSCD 北大核心 2002年第8期955-957,共3页
目的 用ARIMA季节乘积模型 (p ,d ,q) (P ,D ,Q)s对季节性时间序列资料建模并预测 ,并与指数平滑法进行比较 ,考察ARIMA乘积模型的预测效果。方法 用Box Ljung统计量评价ARIMA模型的拟和度 ,用平均预测相对误差作为预测效果的评价指... 目的 用ARIMA季节乘积模型 (p ,d ,q) (P ,D ,Q)s对季节性时间序列资料建模并预测 ,并与指数平滑法进行比较 ,考察ARIMA乘积模型的预测效果。方法 用Box Ljung统计量评价ARIMA模型的拟和度 ,用平均预测相对误差作为预测效果的评价指标。结果 对所分析的季节性时间序列建立了乘积ARIMA(0 ,1,1)× (0 ,1,1) 12 模型 ,平均预测相对误差为 4 89% ,指数平滑法的平均预测相对误差为 8 14 %。结论 对所分析的时间序列 。 展开更多
关键词 arima季节乘积模型 时间序列 门诊量 序列分析 卫生统计学
下载PDF
基于乘积季节ARIMA模型的供热负荷预报 被引量:8
18
作者 邓盛川 于德亮 齐维贵 《沈阳工业大学学报》 EI CAS 2011年第3期321-325,共5页
针对传统的供热调度缺乏对未来供热量进行有效估计这一问题,提出一种基于乘积季节ARIMA模型的供热负荷预报方法.将乘积季节ARIMA模型引入供热负荷预报,通过分析供热负荷数据其固有的趋势和周期性,建立适宜的季节性ARIMA模型,预测未来24... 针对传统的供热调度缺乏对未来供热量进行有效估计这一问题,提出一种基于乘积季节ARIMA模型的供热负荷预报方法.将乘积季节ARIMA模型引入供热负荷预报,通过分析供热负荷数据其固有的趋势和周期性,建立适宜的季节性ARIMA模型,预测未来24小时的供热负荷.采用大庆地区某热力站的供热数据进行建模和仿真预测,其结果的最大误差为3.14%,日预报平均误差为1.45%.实验结果表明,给出的预报结果真实可靠,能够满足供热工程的实际需求,其预报值将成为供热负荷调度和节能的重要依据. 展开更多
关键词 供热负荷预报 arima模型 乘积季节arima 时间序列 供热调度 供热节能 日预报
下载PDF
ARIMA乘积季节模型在上海市甲肝发病预测中的应用 被引量:29
19
作者 朱奕奕 冯玮 +1 位作者 赵琦 徐飚 《复旦学报(医学版)》 CAS CSCD 北大核心 2012年第5期460-464,共5页
目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最... 目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最小二乘法估计模型参数,模型阶数确定后,建立甲肝按月发病数ARIMA乘积季节预测模型。结果非季节和季节移动平均的参数分别是0.6341和0.9999,季节自回归的参数是0.4059,t检验的P值均<0.0001,方差估计值是0.1593,AIC=282.1478,SBC=292.7242,对建立的模型进行残差的白噪声检验,χ2检验统计量的P值均>0.05,据此建立ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型,模型表达式(1-0.405 9B12)(1-B)(1-B12)Yt=(1-0.634 1B)(1-0.999 9B12)εt,并开展上海市甲肝发病数的预测。结论 ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型可用于预测上海市病毒性甲型肝炎发病的季节模型。 展开更多
关键词 自回归求和移动平均(arima)乘积季节模型 时间序列 甲肝
下载PDF
恶性肿瘤住院量与住院费用的ARIMA乘积季节模型预测研究 被引量:14
20
作者 陈玲 程丽君 赵向军 《中国卫生统计》 CSCD 北大核心 2017年第4期554-557,共4页
目的探讨自回归求和移动平均(ARIMA)乘积季节模型在恶性肿瘤住院量与住院费用中的应用,为医院恶性肿瘤业务管理提供科学依据。方法收集某院2007-2016年逐月恶性肿瘤住院患者资料,采用ARIMA乘积季节模型对2007-2015年逐月恶性肿瘤的住院... 目的探讨自回归求和移动平均(ARIMA)乘积季节模型在恶性肿瘤住院量与住院费用中的应用,为医院恶性肿瘤业务管理提供科学依据。方法收集某院2007-2016年逐月恶性肿瘤住院患者资料,采用ARIMA乘积季节模型对2007-2015年逐月恶性肿瘤的住院人次和住院费用进行模型拟合,用2016年逐月数据评价其预测效果,并预测2017年恶性肿瘤逐月住院人次与住院费用。结果 ARIMA(0,1,1)(1,1,0)_(12)是恶性肿瘤住院人次与住院费用的最佳拟合预测模型,拟合相对误差分别为1.1%和1.47%。根据ARIMA(0,1,1)(1,1,0)_(12)预测结果,2017年恶性肿瘤住院量将达7631人次,住院费用将达3.36亿元。结论 ARIMA季节乘积模型能很好地应用于医院业务管理预测中。 展开更多
关键词 恶性肿瘤 arima乘积季节模型 住院量 住院费用 预测
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部