Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to ov...The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.展开更多
This study was undertaken to examine which factors contributed to the correction of crowding in two patients who underwent nonextraction orthodontic treatment. A study model analysis was conducted to determine the eff...This study was undertaken to examine which factors contributed to the correction of crowding in two patients who underwent nonextraction orthodontic treatment. A study model analysis was conducted to determine the effects of the orthodontic treatment for crowding with high canines on crown angulation and dental arch width in two patients. The results showed that the crown angulation was significantly increased, indicating distal tipping in the maxillary dental arch. This tendency was most commonly observed in the premolars among the lateral teeth. With respect to the dental arch width, the largest change was evident in the first molar and first premolar regions in cases 1 and 2, respectively. On the basis of these results, up-righting of mesially tipped lateral teeth and expansion of narrow dental arches could prove to be the keys to the success of space regaining or correction of high canines and mild crowding.展开更多
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque...Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.展开更多
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series...Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.展开更多
Because of good quality of compressive resistance, the hyperbolic arch dam is being increasingly applied to engineering projects. In order to satisfy the needs of compressive resistance under the conditions of high wa...Because of good quality of compressive resistance, the hyperbolic arch dam is being increasingly applied to engineering projects. In order to satisfy the needs of compressive resistance under the conditions of high water pressure, a stress analysis is required for the dam. During the stress analysis process however, due to the complexity of the three-dimensional modeling, it is very hard to form a model. Therefore, the stress analysis process is a barrier for the arch dam. In this article, based on the research of the new line-type arch dam, a mathematical model in different degree of convexity conditions of the dam is established; using the C + + language program, a computer three-dimensional model simulation is realized on AutoCAD. The accurate three-dimensional model is providing a finite element optimization design of the involute hyperbolic arch dam for the next step.展开更多
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects...This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.展开更多
In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix...In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.展开更多
Background:To establish a canine model of aortic arch aneurysm that is suitable for research on new devices and techniques applied to the aortic arch.Materials and methods:Fifteen mongrel dogs underwent surgery.The au...Background:To establish a canine model of aortic arch aneurysm that is suitable for research on new devices and techniques applied to the aortic arch.Materials and methods:Fifteen mongrel dogs underwent surgery.The autologous pericardial patch was sewn on the aortotomy site in the anterior wall of the aortic arch.The animals were followed up for 3 months postoperatively.Computed tomography angiography was used to visualize and measure the aneurysm model.Hematoxylin and eosin staining was used to observe the histological characteristics of the aneurysm model.Changes in aneurysm diameter over time were analyzed using analysis of variance.Results:One dog died of hemorrhage during surgery.Fourteen dogs survived the surgical procedure.Two of them died on the first postoperative day because of ruptures at the suturing margin.The diameter of the aneurysm model was twice as large as that of the aortic arch.There was no significant change in the maximum diameter of the aneurysm model during the follow-up period.Conclusions:We established a controllable and stable aortic arch aneurysm model created with an autologous pericardium patch.The aneurysm model can be used to research endoleaks after thoracic endovascular aortic repair and new endovascular techniques can be applied to the aortic arch.展开更多
A suitable statistical model has been explored for the investors as well as the researchers to resolve the future estimation of share volume by using daily stock volume data from Dhaka Stock Exchange (DSE). The dail...A suitable statistical model has been explored for the investors as well as the researchers to resolve the future estimation of share volume by using daily stock volume data from Dhaka Stock Exchange (DSE). The daily volume data from the June 1, 2004 to April 19, 2010 were retrieved from DSE website as a secondary data source. The Maximum Likelihood---Autoregressive Conditional Heteroskedasticity (ARCH) (Marquardt) method has been applied to construct the models for the stock volume data of DSE by using statistical package software E-Views of verson-5. First of all, an "Auto Regressive Integrated Moving Average (ARIMA) model" was fitted and observed that heteroscedastic volatilities were still present there. To eliminate this dilemma, ARCH class of volatility models has been used and finally the ARIMA with EGARCH model has been explored. Findings of this study have recognized that ARIMA with EGARCH model implies low mean square error, low mean absolute error, low bias proportion, and low variance proportion for share volume data with comparing to other models. Hence, the modelling concept established in this study would be a decisive study for the investors as well as the researchers.展开更多
In order to study the mechanical performance of a new type of cable-stayed beam-arch combination bridge, the results of field static and dynamic load tests are comparatively analyzed with numerical results based on th...In order to study the mechanical performance of a new type of cable-stayed beam-arch combination bridge, the results of field static and dynamic load tests are comparatively analyzed with numerical results based on the Jingyi bridge straddling the Daxi River in Yixing. First, the test scheme, tasks, the corresponding measure method, as well as the relevant codes are described. Secondly, two sets of three- dimensional finite element models are established. One is Ansys which uses the solid element and the other is Midas which adopts the beam element. Finally, the experimental and analytical results are comparatively analyzed, and they show an agreement with each other. The results show that the bridge possesses adequate load-carrying capacity under all static load cases, but the capacity of dissipating external input energy is insufficient due to the relatively smaller damping ratio. The study results can provide a reference for further study and optimization of this type of bridge. Calibrated finite-element models that reflect the real conditions can be used as a baseline for future maintenance of the bridge.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
基金supported by the National Natural Science Foundation of China(Grant No.52079046)the Fundamental Research Funds for the Central Universities(Grant No.B210202017).
文摘The structural behavior of the Xiaowan ultrahigh arch dam is primarily influenced by external loads and time-varying characteristics of dam concrete and foundation rock mass during long-term operation. According to overload testing with a geological model and the measured time series of installed perpendicular lines, the space and time evolution characteristics of the arch dam structure were analyzed, and its mechanical performance was evaluated. Subsequently, the deformation centroid of the deflective curve was suggested to indicate the magnitude and unique distribution rules for a typical dam section using the measured deformation values at multi-monitoring points. The ellipse equations of the critical ellipsoid for the centroid were derived from the historical measured time series. Hydrostatic and seasonal components were extracted from the measured deformation values with a traditional statistical model, and residuals were adopted as a grey component. A time-varying grey model was developed to accurately predict the evolution of the deformation behavior of the ultrahigh arch dam during future operation. In the developed model, constant coefficients were modified so as to be time-dependent functions, and the prediction accuracy was significantly improved through introduction of a forgetting factor. Finally, the critical threshold was estimated, and predicted ellipsoids were derived for the Xiaowan arch dam. The findings of this study can provide technical support for safety evaluation of the actual operation of ultrahigh arch dams and help to provide early warning of abnormal changes.
文摘This study was undertaken to examine which factors contributed to the correction of crowding in two patients who underwent nonextraction orthodontic treatment. A study model analysis was conducted to determine the effects of the orthodontic treatment for crowding with high canines on crown angulation and dental arch width in two patients. The results showed that the crown angulation was significantly increased, indicating distal tipping in the maxillary dental arch. This tendency was most commonly observed in the premolars among the lateral teeth. With respect to the dental arch width, the largest change was evident in the first molar and first premolar regions in cases 1 and 2, respectively. On the basis of these results, up-righting of mesially tipped lateral teeth and expansion of narrow dental arches could prove to be the keys to the success of space regaining or correction of high canines and mild crowding.
基金Projects(20-JKKJ-17,18-JKKJ-05)supported by the Shanxi Communications Holding Group Co.,Ltd.,ChinaProject(41907239)supported by the National Natural Science Foundation of China+1 种基金Project(2020M670698)supported by the China Postdoctoral Science FoundationProject(2019L0295)supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China。
文摘Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.
文摘Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.
基金Supported by Postgraduate Education Innovation Fund of Chongqing Jiaotong University
文摘Because of good quality of compressive resistance, the hyperbolic arch dam is being increasingly applied to engineering projects. In order to satisfy the needs of compressive resistance under the conditions of high water pressure, a stress analysis is required for the dam. During the stress analysis process however, due to the complexity of the three-dimensional modeling, it is very hard to form a model. Therefore, the stress analysis process is a barrier for the arch dam. In this article, based on the research of the new line-type arch dam, a mathematical model in different degree of convexity conditions of the dam is established; using the C + + language program, a computer three-dimensional model simulation is realized on AutoCAD. The accurate three-dimensional model is providing a finite element optimization design of the involute hyperbolic arch dam for the next step.
基金National Natural Science Foundation of China under Grant Nos.51179093 and 91215301Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032
文摘This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
基金Supported by the Key Teacher Foundation of Chongqing University (No. 717411067)
文摘In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.
基金supported by the Henan medical science and technology research projects(222102310014 and LGHJ20200058)。
文摘Background:To establish a canine model of aortic arch aneurysm that is suitable for research on new devices and techniques applied to the aortic arch.Materials and methods:Fifteen mongrel dogs underwent surgery.The autologous pericardial patch was sewn on the aortotomy site in the anterior wall of the aortic arch.The animals were followed up for 3 months postoperatively.Computed tomography angiography was used to visualize and measure the aneurysm model.Hematoxylin and eosin staining was used to observe the histological characteristics of the aneurysm model.Changes in aneurysm diameter over time were analyzed using analysis of variance.Results:One dog died of hemorrhage during surgery.Fourteen dogs survived the surgical procedure.Two of them died on the first postoperative day because of ruptures at the suturing margin.The diameter of the aneurysm model was twice as large as that of the aortic arch.There was no significant change in the maximum diameter of the aneurysm model during the follow-up period.Conclusions:We established a controllable and stable aortic arch aneurysm model created with an autologous pericardium patch.The aneurysm model can be used to research endoleaks after thoracic endovascular aortic repair and new endovascular techniques can be applied to the aortic arch.
文摘A suitable statistical model has been explored for the investors as well as the researchers to resolve the future estimation of share volume by using daily stock volume data from Dhaka Stock Exchange (DSE). The daily volume data from the June 1, 2004 to April 19, 2010 were retrieved from DSE website as a secondary data source. The Maximum Likelihood---Autoregressive Conditional Heteroskedasticity (ARCH) (Marquardt) method has been applied to construct the models for the stock volume data of DSE by using statistical package software E-Views of verson-5. First of all, an "Auto Regressive Integrated Moving Average (ARIMA) model" was fitted and observed that heteroscedastic volatilities were still present there. To eliminate this dilemma, ARCH class of volatility models has been used and finally the ARIMA with EGARCH model has been explored. Findings of this study have recognized that ARIMA with EGARCH model implies low mean square error, low mean absolute error, low bias proportion, and low variance proportion for share volume data with comparing to other models. Hence, the modelling concept established in this study would be a decisive study for the investors as well as the researchers.
文摘In order to study the mechanical performance of a new type of cable-stayed beam-arch combination bridge, the results of field static and dynamic load tests are comparatively analyzed with numerical results based on the Jingyi bridge straddling the Daxi River in Yixing. First, the test scheme, tasks, the corresponding measure method, as well as the relevant codes are described. Secondly, two sets of three- dimensional finite element models are established. One is Ansys which uses the solid element and the other is Midas which adopts the beam element. Finally, the experimental and analytical results are comparatively analyzed, and they show an agreement with each other. The results show that the bridge possesses adequate load-carrying capacity under all static load cases, but the capacity of dissipating external input energy is insufficient due to the relatively smaller damping ratio. The study results can provide a reference for further study and optimization of this type of bridge. Calibrated finite-element models that reflect the real conditions can be used as a baseline for future maintenance of the bridge.