期刊文献+
共找到17,575篇文章
< 1 2 250 >
每页显示 20 50 100
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
1
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent neural network(RNN) Whale Optimization algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
2
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
3
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
4
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks
5
作者 Gibrael Abosamra 《Computers, Materials & Continua》 SCIE EI 2023年第2期3539-3560,共22页
This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input ... This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%. 展开更多
关键词 Genetic algorithms memetic algorithm convolutional neural network object detection adaptive binarization filters license plate detection
下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
6
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) Convolutional neural network(CNN)
下载PDF
Estimation of Weibull Distribution Parameters for Wind Speed Characteristics Using Neural Network Algorithm
7
作者 Musaed Alrashidi 《Computers, Materials & Continua》 SCIE EI 2023年第4期1073-1088,共16页
Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regi... Harvesting the power coming from the wind provides a green andenvironmentally friendly approach to producing electricity. To facilitate theongoing advancement in wind energy applications, deep knowledge aboutwind regime behavior is essential. Wind speed is typically characterized bya statistical distribution, and the two-parameters Weibull distribution hasshown its ability to represent wind speeds worldwide. Estimation of Weibullparameters, namely scale (c) and shape (k) parameters, is vital to describethe observed wind speeds data accurately. Yet, it is still a challenging task.Several numerical estimation approaches have been used by researchers toobtain c and k. However, utilizing such methods to characterize wind speedsmay lead to unsatisfactory accuracy. Therefore, this study aims to investigatethe performance of the metaheuristic optimization algorithm, Neural NetworkAlgorithm (NNA), in obtaining Weibull parameters and comparing itsperformance with five numerical estimation approaches. In carrying out thestudy, the wind characteristics of three sites in Saudi Arabia, namely HaferAl Batin, Riyadh, and Sharurah, are analyzed. Results exhibit that NNA hashigh accuracy fitting results compared to the numerical estimation methods.The NNA demonstrates its efficiency in optimizing Weibull parameters at allthe considered sites with correlations exceeding 98.54. 展开更多
关键词 Weibull probability density function wind energy numerical estimation method metaheuristic optimization algorithm neural network algorithm
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
8
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 Non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
9
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network
10
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
下载PDF
Micro Calcification Detection in Mammogram Images Using Contiguous Convolutional Neural Network Algorithm
11
作者 P.Gomathi C.Muniraj P.S.Periasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1887-1899,共13页
The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the imag... The mortality rate decreases as the early detection of Breast Cancer(BC)methods are emerging very fast,and when the starting stage of BC is detected,it is curable.The early detection of the disease depends on the image processing techniques,and it is used to identify the disease easily and accurately,especially the micro calcifications are visible on mammography when they are 0.1 mm or bigger,and cancer cells are about 0.03 mm,which is crucial for identifying in the BC area.To achieve this micro calcification in the BC images,it is necessary to focus on the four main steps presented in this work.There are three significant stages of the process assigned to find the BC using a thermal image;the image processing procedures are described below.In the first stage of the process,the Gaussian filter technique is implemented to magnify the screening image.During the second stage,BC detection is separated from the pre-processed image.The Proposed Versatile K-means clustering(VKC)algorithm with segmentation is used to identify the BC detection form of the screening image.The centroids are then recalculated using proposed VKC,which takes the mean of all data points allocated to that centroid’s cluster,lowering the overall intracluster variance in comparison to the prior phase.The“means”in K-means refers to the process of averaging the data and determining a new centroid.This process eliminates unnecessary areas of interest.First,the mammogram screening image information is taken from the patient and begins with the Contiguous Convolutional Neural Network(CCNN)method.The proposed CCNN is used to classify the Micro calcification in the BC spot using the feature values is the fourth stage of the process.The assess the presence of high-definition digital infrared thermography technology and knowledge base and suggests that future diagnostic and treatment services in breast cancer imaging will be developed.The use of sophisticated CCNN techniques in thermography is being developed to attain a greater level of consistency.The implemented(CCNN)technique’s performance is examined with different classification parameters like Recall,Precision,F-measure and accuracy.Finally,the Breast Cancer stages will be classified based on the true positive and true negative values. 展开更多
关键词 Contiguous Convolutional neural network(CCNN) Gaussian filter Versatile K-Means Clustering(VKC)algorithm mammogram cancer detection
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
12
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:5
13
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
下载PDF
Fuzzy ARTMAP neural network for seafloor classification from multibeam sonar data 被引量:2
14
作者 周兴华 Chen Yongqi +1 位作者 Nick Emerson Du Dewen 《High Technology Letters》 EI CAS 2006年第2期219-224,共6页
This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed ... This paper presents a seafloor classification method of multibeam sonar data, based on the use of Adaptive Resonance Theory (ART) neural networks. A general ART-based neural network, Fuzzy ARTMAP, has been proposed for seafloor classification of multibeam sonar data. An evolutionary strategy was used to generate new training samples near the cluster boundaries of the neural network, therefore the weights can be revised and refined by supervised learning. The proposed method resolves the training problem for Fuzzy ARTMAP neural networks, which are applied to seafloor classification of multibeam sonar data when there are less than adequate ground-troth samples. The results were synthetically analyzed in comparison with the standard Fuzzy ARTMAP network and a conventional Bayesian classifier. The conclusion can be drawn that Fuzzy ARTMAP neural networks combining with GA algorithms can be alternative powerful tools for seafloor classification of multibeam sonar data. 展开更多
关键词 Fuzzy artmap neural network genetic algorithms seafloor classification multibeam sonar
下载PDF
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
15
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind Evolutionary algorithm BP neural network
下载PDF
Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data 被引量:1
16
作者 Leyang Wang Ranran Xu Fengbin Yu 《Geodesy and Geodynamics》 CSCD 2022年第4期386-398,共13页
The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-line... The traditional genetic algorithm(GA)has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters.Therefore,this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA.This paper proposes a genetic Nelder-Mead neural network algorithm(GNMNNA).This algorithm uses a neural network algorithm(NNA)to optimize the global search ability of GA.At the same time,the simplex algorithm is used to optimize the local search capability of the GA.Through numerical examples,the stability of the inversion algorithm under different strategies is explored.The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms.The effectiveness of GNMNNA is verified by the BodrumeKos earthquake and Monte Cristo Range earthquake.The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability.Therefore,GNMNNA has greater application potential in complex earthquake environment. 展开更多
关键词 Fault parameter inversion Genetic algorithm Nelder-Mead simplex algorithm neural network algorithm
下载PDF
An Optimized Neural Network with Bat Algorithm for DNA Sequence Classification 被引量:1
17
作者 Muhammad Zubair Rehman Muhammad Aamir +3 位作者 Nazri Mohd.Nawi Abdullah Khan Saima Anwar Lashari Siyab Khan 《Computers, Materials & Continua》 SCIE EI 2022年第10期493-511,共19页
Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomef... Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models. 展开更多
关键词 DNA sequence classification bat algorithm levy flight back propagation neural network hybrid artificial neural networks(HANN)
下载PDF
A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks
18
作者 张长江 付梦印 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期119-124,共6页
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct... A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis. 展开更多
关键词 multi layer feed forward neural networks BP algorithm Newton recursive algorithm
下载PDF
A Self-organization Mapping Neural Network Algorithm and Its Application to Identify Ecosystem Service Zones 被引量:16
19
作者 战金艳 史娜娜 +1 位作者 吴红 邓祥征 《Agricultural Science & Technology》 CAS 2009年第5期162-165,共4页
The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem A... The self-organization mapping (SOM) neural network algorithm is a new method used to identify the ecosystem service zones at regional extent. According to the ecosystem assessment framework of Millennium Ecosystem Assessment ( MA), this paper develops an indicator system and conducts a spatial cluster analysis at the 1km by I km grid pixel scale with the SOM neural network algorithm to sort the core ecosystem services over the vertical and horizontal dimensions. A case study was carried out in Xilingol League. The ecosystem services in Xilingol League could be divided to six different ecological zones. The SOM neural network algorithm was capable of identifying the similarities among the input data automatically. The research provides both spatially and temporally valuable information targeted sustainable ecosystem management for decision-makers. 展开更多
关键词 neural network algorithm Ecosystem services Ecosystem service zones Sustainable ecosystem management
下载PDF
Evolving Neural Networks Using an Improved Genetic Algorithm 被引量:2
20
作者 温秀兰 宋爱国 +1 位作者 段江海 王一清 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期367-369,共3页
A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen... A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove... 展开更多
关键词 genetic algorithms neural network nonlinear forecasting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部