Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by...Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.展开更多
The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers acco...The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers according to crystallinity and characterizing the fractions by (CNMR)-C-13. The effects of two alkoxysilane donors, triethoxyphenylsilane (PTES) and dimethoxydi-tert-butylsilane (TBMS), on CD and ID of the copolymers were compared. Three main parts in the CD diagram of each copolymer were distinguished, which were correlated to active center distribution (ACD) based on three groups of different active centers. By studying the changes in l-hexene content, microisotacticity and reactivity ratio product of three typical fractions, the effects of external donor on ACD were better elucidated. It was found that TBMS shows much stronger effects on ACD than PTES. In the former system, most fractions were produced on active centers with relatively lower r(1)r(2), higher reactivity to I-hexene, and higher stereospecificity as compared to the system without external donor. It is concluded that the observed very extensive changes in ACD are mainly resulted by the formation of new types of active centers, possibly by coordination of external donor to certain positions on the catalyst.展开更多
Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight...Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on ethyle...展开更多
Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecul...Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecular weight distribution (MWD), The effect of the structure and the amount of these IEDs on the polymerization performance was in- vestigated. The results implied that the molecular weight distribution of the obtained polyethylene could be adjusted by the incorporation of IEDs. SEM result showed that the morphology of catalyst particle was spherical and uniform in size distribution. The titanium content of these catalysts was higher, the active TiCl4 species were easily anchored on the support than that without adding IED, which was determined by ICE The GPC result confirmed that the polyethylene with broader molecular weight distribution in the range of from 23.4 to 25.6 was obtained using triethoxy-(-cyclopentyloxy)-silane (ED1) and triethoxy-(-cyclohexyloxyl)- silane (ED2) as the internal electron donors.展开更多
Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are...Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are highly active and stereospecific in combination with an external donor for the polymerization of propylene. The activity of these catalysts is dramatically influenced by the electronic capability of the phenyl substituents on the sulfonyl phenylamines. Therefore, the performances of the catalysts can be modified by adjusting the electronic property of the phenyl substituents of the sulfonyl phenylamines.展开更多
Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were stu...Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.展开更多
A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found th...A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.展开更多
Due to the development of the new energy industry,polypropylene with ultra-high molecular weight plays a crucial role for battery isolation membrane.This work investigated the effect of internal electron donor of Zieg...Due to the development of the new energy industry,polypropylene with ultra-high molecular weight plays a crucial role for battery isolation membrane.This work investigated the effect of internal electron donor of Ziegler-Natta catalyst system on the molecular weight of the obtained polypropylene.The scanning electron microscope(SEM)and Canon camera were used to characterize the surface morphologies of catalyst particles and polymer particles,respectively.Compared with the polypropylene particles featuring a spherical shape,these study results confirmed that the morphology duplication theory from the catalyst particle to the morphology of polymer particle was exhibited.The gel permeation chromatography(GPC)results revealed that the obtained polypropylene has a much higher average molecular weight than those prepared by conventional method.The Fourier transform infrared spectrometry(FT-IR)and X-ray photoelectron spectroscopy(XPS)revealed that the carbonyl oxygen atom on ester group was preferentially bound to Mg and Ti,as compared to the ether oxygen atom.The XPS results showed that the ratio of Ti^(3+)/Ti^(4+)could be changed by internal electron donors.When Ti3+content was nearly 99%in the Ziegler-Natta catalyst system,isotactic polypropylene with an ultra-high molecular weight of up to 1.42×10^(6)g/mol was obtained by Cat.3.This result implied that internal electron donor ID3 could reduce theβ-hydride elimination reaction to further increase the molecular weight of the obtained polymer.展开更多
This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure...This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.展开更多
The number of active centers (C_p)-t and k_p-t profiles of Solvay type TiCl_3 - AlR_3 (R=C_2H_5, i-C_4H_9) or Stauffer AA TiCl_3-Al (C_2H_5)_3 catalyzed 1-octene polymerization were determined by using an acetyl chlor...The number of active centers (C_p)-t and k_p-t profiles of Solvay type TiCl_3 - AlR_3 (R=C_2H_5, i-C_4H_9) or Stauffer AA TiCl_3-Al (C_2H_5)_3 catalyzed 1-octene polymerization were determined by using an acetyl chloride quenching method as well as kinetic data. The results show that in the studied systems k_p decreases when C_p increases, indicating the presence of two or more types of different active centers. The C_(p^(-t)) plots of the Solvay TiCl_3-AlR_3 systems show the presence of both stable active centers and unstable centers which decay in the polymerization process. The phenomena are explained based on a model of active center plurality. The increases of C_p in the induction periods are also discussed.展开更多
A new method for the activation of crystalline magnesium chloride by polyethylene glycol was described. Polyethylene glycol could solubilize crystalline magnesium chloride. The resulting solution was used for the prep...A new method for the activation of crystalline magnesium chloride by polyethylene glycol was described. Polyethylene glycol could solubilize crystalline magnesium chloride. The resulting solution was used for the preparation of Ziegler-Natta propylene polymerization catalysts. These catalysts are highly active and stereospecific. The relationship between the catalytic activity and the Al/Ti ratio was studied in detail.展开更多
The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetat...The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds cau...展开更多
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and te...Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 20172045) Science and Technology Plan Fund of Zhe-jiang Province (No. 001101116) and Foundation for Doctors ofNingbo City (No. 2003A62012) China
文摘Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.
文摘The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers according to crystallinity and characterizing the fractions by (CNMR)-C-13. The effects of two alkoxysilane donors, triethoxyphenylsilane (PTES) and dimethoxydi-tert-butylsilane (TBMS), on CD and ID of the copolymers were compared. Three main parts in the CD diagram of each copolymer were distinguished, which were correlated to active center distribution (ACD) based on three groups of different active centers. By studying the changes in l-hexene content, microisotacticity and reactivity ratio product of three typical fractions, the effects of external donor on ACD were better elucidated. It was found that TBMS shows much stronger effects on ACD than PTES. In the former system, most fractions were produced on active centers with relatively lower r(1)r(2), higher reactivity to I-hexene, and higher stereospecificity as compared to the system without external donor. It is concluded that the observed very extensive changes in ACD are mainly resulted by the formation of new types of active centers, possibly by coordination of external donor to certain positions on the catalyst.
基金the Major State Basic Research Programs(No.2005CB623804).
文摘Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on ethyle...
基金the National Natural Science Foundation of China(No.21174011)the Natural Science Foundation of Beijing,(No.2102036)the PetroChina Innovation Fund(Grant No.2011D-5006-0502)
文摘Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecular weight distribution (MWD), The effect of the structure and the amount of these IEDs on the polymerization performance was in- vestigated. The results implied that the molecular weight distribution of the obtained polyethylene could be adjusted by the incorporation of IEDs. SEM result showed that the morphology of catalyst particle was spherical and uniform in size distribution. The titanium content of these catalysts was higher, the active TiCl4 species were easily anchored on the support than that without adding IED, which was determined by ICE The GPC result confirmed that the polyethylene with broader molecular weight distribution in the range of from 23.4 to 25.6 was obtained using triethoxy-(-cyclopentyloxy)-silane (ED1) and triethoxy-(-cyclohexyloxyl)- silane (ED2) as the internal electron donors.
文摘Several bis(trifluoromethylsulfonyl)phenylamines have been synthesized and used as internal donors for the preparation of heterogeneous Ziegler-Natta catalysts for propylene polymerization. These new cata- lysts are highly active and stereospecific in combination with an external donor for the polymerization of propylene. The activity of these catalysts is dramatically influenced by the electronic capability of the phenyl substituents on the sulfonyl phenylamines. Therefore, the performances of the catalysts can be modified by adjusting the electronic property of the phenyl substituents of the sulfonyl phenylamines.
文摘Copolymerization of propylene and hindered piperidine monomers was carried out over a high activity supported Ziegler-Natta catalyst, using Al(C2H5)(3) as cocatalyst. Factors which affect the copolymerization were studied, The copolymers exhibited high light stability without adding extra light stabilizers. A self-stabilized polypropylene was prepared.
基金This work was supported by the National Natural Science Foundation of China (grant No. 20174034, 20274037).
文摘A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.
基金This study was financially supported by the People’s Republic of China Ministry of Industry and Information Technology(No.gxgh2019-795)the National Natural Science Foundation of China(No.U1462102)The authors also appreciate the support provided by the Key Laboratory of Carbon Fiber and Functional Polymers.
文摘Due to the development of the new energy industry,polypropylene with ultra-high molecular weight plays a crucial role for battery isolation membrane.This work investigated the effect of internal electron donor of Ziegler-Natta catalyst system on the molecular weight of the obtained polypropylene.The scanning electron microscope(SEM)and Canon camera were used to characterize the surface morphologies of catalyst particles and polymer particles,respectively.Compared with the polypropylene particles featuring a spherical shape,these study results confirmed that the morphology duplication theory from the catalyst particle to the morphology of polymer particle was exhibited.The gel permeation chromatography(GPC)results revealed that the obtained polypropylene has a much higher average molecular weight than those prepared by conventional method.The Fourier transform infrared spectrometry(FT-IR)and X-ray photoelectron spectroscopy(XPS)revealed that the carbonyl oxygen atom on ester group was preferentially bound to Mg and Ti,as compared to the ether oxygen atom.The XPS results showed that the ratio of Ti^(3+)/Ti^(4+)could be changed by internal electron donors.When Ti3+content was nearly 99%in the Ziegler-Natta catalyst system,isotactic polypropylene with an ultra-high molecular weight of up to 1.42×10^(6)g/mol was obtained by Cat.3.This result implied that internal electron donor ID3 could reduce theβ-hydride elimination reaction to further increase the molecular weight of the obtained polymer.
基金the Sinopec Beijing Research Institute of Chemical Industry for its financial support (No. 5-12ZS0419, 5-10ZS0245, 5-12ZS0270)
文摘This article presents a detailed structural study of a new spherical Mg Cl2-supported Ti Cl4 Ziegler-Natta catalyst for isotactic propylene polymerization, and researches on the relationship between catalyst structure and polymer properties. The spherical support with the chemical composition of CH3CH2 OMg OCH(CH2Cl)2 has been synthesized from a new dispersion system and is used as the supporting material to prepare Ziegler-Natta catalyst. The XRD analysis indicates that the catalyst is fully activated with δ-Mg Cl2 in the active catalyst. The far-IR spectrometric results confirm again the presence of δ-Mg Cl2 in the active catalyst. Textural property of the active catalyst exhibits high surface area coupled with high porosity. The high activity in propylene polymerization is mainly ascribed to the full activation and the porous structure of the catalyst. Scanning electron microscopy/energy dispersive spectrometer mapping results indicate a uniform titanium distribution throughout the catalyst particles. Particle size analysis shows that the catalyst has a narrow particle size distribution. The perfect spherical shape, uniform titanium distribution and narrow particle size distribution of the catalyst confirm the advantage of polymer particles production with less fines. The solid state 13 C NMR and mid-IR spectroscopic analyses indicate that there exists strong complexation between diisobutyl phthalate and Mg Cl2, which leads to the high isotacticity of polypropylene.
文摘The number of active centers (C_p)-t and k_p-t profiles of Solvay type TiCl_3 - AlR_3 (R=C_2H_5, i-C_4H_9) or Stauffer AA TiCl_3-Al (C_2H_5)_3 catalyzed 1-octene polymerization were determined by using an acetyl chloride quenching method as well as kinetic data. The results show that in the studied systems k_p decreases when C_p increases, indicating the presence of two or more types of different active centers. The C_(p^(-t)) plots of the Solvay TiCl_3-AlR_3 systems show the presence of both stable active centers and unstable centers which decay in the polymerization process. The phenomena are explained based on a model of active center plurality. The increases of C_p in the induction periods are also discussed.
文摘A new method for the activation of crystalline magnesium chloride by polyethylene glycol was described. Polyethylene glycol could solubilize crystalline magnesium chloride. The resulting solution was used for the preparation of Ziegler-Natta propylene polymerization catalysts. These catalysts are highly active and stereospecific. The relationship between the catalytic activity and the Al/Ti ratio was studied in detail.
基金The authors gratefully acknowledge the Thailand Research Fund(TRF)Royal Golden Jubilee program for the financial support.
文摘The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds cau...
文摘Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.