期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ASP-SAC算法的列车自动驾驶速度控制
1
作者 刘伯鸿 卢田 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2637-2648,共12页
随着经济建设的绿色转型以及人工智能的快速发展,城市轨道交通已成为居民日常出行的重要方式,在保障安全性、高效性和准点性的前提下,列车运行的节能性和舒适性需求也越来越被关注。合理的运行策略能够有效实现多种目标需求下的列车自... 随着经济建设的绿色转型以及人工智能的快速发展,城市轨道交通已成为居民日常出行的重要方式,在保障安全性、高效性和准点性的前提下,列车运行的节能性和舒适性需求也越来越被关注。合理的运行策略能够有效实现多种目标需求下的列车自动驾驶速度控制,强化学习作为一种智能决策方法,能够有效解决这一控制问题。首先,通过综合分析技术、安全性和乘客体验等方面的因素,基于专家经验动作划分和状态信息熵将软演员-评论家(SAC)改进为动作状态经验优先软演员-评论家(ASP-SAC)方法,用于研究列车自动驾驶速度控制问题。其次,将问题马尔可夫形式化,搭建了列车运行环境,确定了状态空间、动作空间以及基于目标控制的奖励函数。最后,以北京地铁亦庄线的一段区间数据为例进行试验,对ASP-SAC方法进行验证并与其他一些算法在相同环境下进行性能优劣比较。研究结果表明:该方法对于多目标控制需求下的列车自动驾驶速度控制问题具有可行性,与未改进前相比算法效率提高22.73%,与PPO算法相比提高29.17%,改进效果良好。同时,列车运行时在安全性、舒适性无误的情况下,准时性、精确性和节能性都强于SAC、DQN、PPO以及PID算法,其中能耗分别减少3.64%、5.62%、4.38%、7.35%,控制效果良好。此外,该方法亦具备鲁棒性,在列车自动驾驶速度控制方面具有一定的优越性和可参考性。 展开更多
关键词 列车自动驾驶 多目标控制 强化学习 asp-sac算法 速度控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部