期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
AB049.Astrogliosis in the monkey retina in response to moderate fetal alcohol exposure
1
作者 Joseph Bouskila Ryan Kucera +3 位作者 Clara Eid Jean-François Bouchard Roberta Palmour Maurice Ptito 《Annals of Eye Science》 2018年第1期455-455,共1页
Background:Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive.We have previously reported changes in electr... Background:Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive.We have previously reported changes in electroretinogram recordings in moderate fetal alcohol exposure(MFAE)vervet monkeys.The goal of this study is to characterize the anatomical effects of moderate MFAE during the third trimester in the vervet monkey retina.Methods:Using immunohistochemistry and Western blots,we analyzed changes in the expression of cell-type specific proteins that may occur in the MFAE retina compared to the normal retina.We also compared the basic retinal anatomy across groups by examining retinal layering and thickness.Results:Our main result indicates that GFAP(a potent marker of astrocytes)immunoreactivity was increased in the MFAE retina indicating strong astrogliosis.There was no obvious change in the overall anatomy in the MFAE retina and no significant differences in the mean thickness of each retinal layer.Furthermore,no significant changes in the morphology of the photoreceptors,horizontal cells,bipolar cells,and amacrines cells was observed.Conclusions:These data indicate that astrogliosis is a consequence of prenatal alcohol exposure and might explain the reported changes in the electroretinographic responses. 展开更多
关键词 Fetal alcohol exposure astrogliosis RETINA MONKEYS IMMUNOHISTOCHEMISTRY
下载PDF
Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway
2
作者 Chenxi Zhao Tiangang Zhou +9 位作者 Ming Li Jie Liu Xiaoqing Zhao Yilin Pang Xinjie Liu Jiawei Zhang Lei Ma Wenxiang Li Xue Yao Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期434-439,共6页
Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we... Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury. 展开更多
关键词 ARGATROBAN astrogliosis JAK/STAT signaling pathway protease-activated receptor-1 spinal cord injury THROMBIN vimentin
下载PDF
Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis
3
作者 Markley Silva Oliveira Junior Laura Reiche +3 位作者 Emerson Daniele Ines Kortebi Maryam Faiz Patrick Küry 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期578-582,共5页
Astrocytes are indispensable for central nervous system development and homeostasis.In response to injury and disease,astrocytes are integral to the immunological-and the,albeit limited,repair response.In this review,... Astrocytes are indispensable for central nervous system development and homeostasis.In response to injury and disease,astrocytes are integral to the immunological-and the,albeit limited,repair response.In this review,we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models.We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination.Finally,we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response. 展开更多
关键词 ASTROCYTES DEMYELINATION drug-based therapies myelin repair oligodendrocyte precursor cells reactive astrogliosis
下载PDF
Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis 被引量:36
4
作者 Xue Yao Yan Zhang +12 位作者 Jian Hao Hui-Quan Duan Chen-Xi Zhao Chao Sun Bo Li Bao-You Fan Xu Wang Wen-Xiang Li Xuan-Hao Fu Yong Hu Chang Liu Xiao-Hong Kong Shi-Qing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期532-541,共10页
Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition repre... Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows:(1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group.(2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group.(3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury.(4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group.(5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2(ACSF2) and iron-responsive element-binding protein 2(IREB2) were up-regulated in the Deferoxamine group.(6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury. 展开更多
关键词 nerve REGENERATION iron spinal CORD INJURY secondary INJURY ferroptosis DEFEROXAMINE GPX4 xCT treatment astrogliosis lipid PEROXIDATION neural REGENERATION
下载PDF
Environmental cues determine the fate of astrocytes after spinal cord injury 被引量:8
5
作者 Fatima M.Nathan Shuxin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1964-1970,共7页
Reactive astrogliosis occurs after central nervous system(CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, na?ve astrocytes are converted into reactive as... Reactive astrogliosis occurs after central nervous system(CNS) injuries whereby resident astrocytes form rapid responses along a graded continuum. Following CNS lesions, na?ve astrocytes are converted into reactive astrocytes and eventually into scar-forming astrocytes that block axon regeneration and neural repair. It has been known for decades that scarring development and its related extracellular matrix molecules interfere with regeneration of injured axons after CNS injury, but the cellular and molecular mechanisms for controlling astrocytic scar formation and maintenance are not well known. Recent use of various genetic tools has made tremendous progress in better understanding genesis of reactive astrogliosis. Especially, the latest experiments demonstrate environment-dependent plasticity of reactive astrogliosis because reactive astrocytes isolated from injured spinal cord form scarring astrocytes when transplanted into injured spinal cord, but revert in retrograde to naive astrocytes when transplanted into naive spinal cord. The interactions between upregulated type I collagen and its receptor integrin β1 and the N-cadherin-mediated cell adhesion appear to play major roles for local astrogliosis around the lesion. This review centers on the environment-dependent plasticity of reactive astrogliosis after spinal cord injury and its potential as a therapeutic target. 展开更多
关键词 astrogliosis astrocyte fate scar formation spinal cord injury axon regeneration environment cue collagen I integrin β1
下载PDF
Fibroadhesive scarring of grafted collagen scaffolds interferes with implant–host neural tissue integration and bridging in experimental spinal cord injury 被引量:4
6
作者 Haktan Altinova Sebastian Hammes +10 位作者 Moniek Palm Jose Gerardo-Nava Pascal Achenbach Ronald Deumens Emmanuel Hermans Tobias Fuhrmann Arne Boecker Sabien Geraldine Antonia van Neerven Ahmet Bozkurt Joachim Weis Gary Anthony Brook 《Regenerative Biomaterials》 SCIE 2019年第2期75-87,共13页
Severe traumatic spinal cord injury(SCI)results in a devastating and permanent loss of function,and is currently an incurable condition.It is generally accepted that future intervention strategies will require combina... Severe traumatic spinal cord injury(SCI)results in a devastating and permanent loss of function,and is currently an incurable condition.It is generally accepted that future intervention strategies will require combinational approaches,including bioengineered scaffolds,to support axon growth across tissue scarring and cystic cavitation.Previously,we demonstrated that implantation of a microporous type-I collagen scaffold into an experimental model of SCI was capable of supporting functional recovery in the absence of extensive implant–host neural tissue integration.Here,we demonstrate the reactive host cellular responses that may be detrimental to neural tissue integration after implantation of collagen scaffolds into unilateral resection injuries of the adult rat spinal cord.Immunohistochemistry demonstrated scattered fibroblast-like cell infiltration throughout the scaffolds as well as the presence of variable layers of densely packed cells,the fine processes of which extended along the graft–host interface.Few reactive astroglial or regenerating axonal profiles could be seen traversing this layer.Such encapsulation-type behaviour around bioengineered scaffolds impedes the integration of host neural tissues and reduces the intended bridging role of the implant.Characterization of the cellular and molecular mechanisms underpinning this behaviour will be pivotal in the future design of collagen-based bridging scaffolds intended for regenerative medicine. 展开更多
关键词 spinal cord injury CNS-scarring type-I collagen SCAFFOLD astrogliosis fibrosis ENCAPSULATION
原文传递
Role of Elevated Thrombospondin-1 in Kainic Acid-Induced Status Epilepticus 被引量:1
7
作者 Yurong Zhang Mengdi Zhang +8 位作者 Wei Zhu Xiaohong Pan Qiaoyun Wang Xue Gao Chaoyun Wang Xiuli Zhang Yuxia Liu Shucui Li Hongliu Sun 《Neuroscience Bulletin》 SCIE CAS CSCD 2020年第3期263-276,共14页
Previous studies have suggested that thrombospondin-1(TSP-1) regulates the transforming growth factor beta 1(TGF-b1)/phosphorylated Smad2/3(p Smad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. Howe... Previous studies have suggested that thrombospondin-1(TSP-1) regulates the transforming growth factor beta 1(TGF-b1)/phosphorylated Smad2/3(p Smad2/3) pathway. Moreover, TSP-1 is closely associated with epilepsy. However, the role of the TSP-1-regulated TGFb1/p Smad2/3 pathway in seizures remains unclear. In this study, changes in this pathway were assessed following kainic acid(KA)-induced status epilepticus(SE) in rats.The results showed that increases in the TSP-1/TGF-b1/p Smad2/3 levels spatially and temporally matched the increases in glial fibrillary acidic protein(GFAP)/chondroitin sulfate(CS56) levels following KA administration.Inhibition of TSP-1 expression by small interfering RNA or inhibition of TGF-b1 activation with a Leu-Ser-Lys-Leu peptide significantly reduced the severity of KA-induced acute seizures. These anti-seizure effects were accompanied by decreased GFAP/CS56 expression and Smad2/3 phosphorylation. Moreover, inhibiting Smad2/3 phosphorylation with ponatinib or SIS3 also significantly reduced seizure severity, alongside reducing GFAP/CS56 immunoreactivity. These results suggest that the TSP-1-regulated TGF-b1/p Smad2/3 pathway plays a key role in KA-induced SE and astrogliosis, and that inhibiting this pathway may be a potential anti-seizure strategy. 展开更多
关键词 astrogliosis STATUS epilepticus PONATINIB Thrombospondin-1
原文传递
Effect of ciliary neurotrophic factor on the reactive astro-gliosis of cultured astrocytes from newborn rat brain
8
作者 XIAN Haiqing FAN Ming +4 位作者 YU Shun LIU Shuhong DING Aishi Ml Ruifa QIU Zongyin 《Chinese Science Bulletin》 SCIE EI CAS 2001年第2期129-133,共5页
The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the ... The effect of ciliary neurotrophic factor (CNTF) on reactive astrogliosis was studied on a mechanical scratch model of the confluent astrocytic cultures from newborn rat brain. Following injury, the astrocytes at the edge of the injured area displayed a typical process of the reactive astrogliosis. This process included apparently hyperplastic change and significantly increased GFAP expression of the flat astrocytes, and migration to the injured area of the O-2A progenitor cells and their differentiation into process-bearing astrocytes. Exogenous CNTF applied to the cell cultures significantly promoted the hyperplasia and GFAP expression of the flat astrocytes. The results suggest that CNTF can enhance the reactive astrogliosis in the injured area. 展开更多
关键词 CILIARY NEUROTROPHIC factor astrogliosis mechanical scratch model.
原文传递
Roles of miRNAs in spinal cord injury and potential therapeutic interventions
9
作者 Badria Almurshidi Wayne Carver +1 位作者 Geoff Scott Swapan K.Ray 《Neuroimmunology and Neuroinflammation》 2019年第10期1-11,共11页
Spinal cord injury(SCI)affects approximately 200,000 individuals per year worldwide.There are more than 27 million people worldwide living with long-term disability due to SCI.Historically,it was thought that the cent... Spinal cord injury(SCI)affects approximately 200,000 individuals per year worldwide.There are more than 27 million people worldwide living with long-term disability due to SCI.Historically,it was thought that the central nervous system(CNS)had little ability for regeneration;however,more recent studies have demonstrated potential for repair within the CNS.Because of this,there exists a renewed interest in the discovery of novel approaches to promote regeneration in the CNS including the spinal cord.It is important to know the roles of the microRNAs(miRNAs)in modulation of pathogenesis in SCI and the potentials of the miRNA-based clinical interventions for controlling post-injury symptoms and improving functional recovery.The miRNAs,which are non-coding RNAs with an average of 22 nucleotides in length,are post-transcriptional gene regulators that cause degradation of the target mRNAs and thus negatively control their translation.This review article focuses on current research related to miRNAs and their roles in modulating SCI symptoms,asserting that miRNAs contribute to critical post-SCI molecular processes including neuroplasticity,functional recovery,astrogliosis,neuropathic pain,inflammation,and apoptosis.In particular,miR-96 provides a promising therapeutic opportunity to improve the outcomes of clinical interventions,including the way SCI injuries are evaluated and treated. 展开更多
关键词 Spinal cord injury MIRNAS astrogliosis neuropathic pain INFLAMMATION APOPTOSIS functional recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部