提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的...提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。展开更多
为提高智能电网的安全性,结合传感器量测数据和攻击向量服从正态分布的特性,提出了一种基于高斯混合模型的虚假数据注入攻击(False Data Injection Attacks,FDIA)检测方法。在该方法中,通过EM算法求解出高斯混合模型参数,然后根据判断准...为提高智能电网的安全性,结合传感器量测数据和攻击向量服从正态分布的特性,提出了一种基于高斯混合模型的虚假数据注入攻击(False Data Injection Attacks,FDIA)检测方法。在该方法中,通过EM算法求解出高斯混合模型参数,然后根据判断准则,利用测试数据对高斯混合模型的分类效果进行验证。仿真实验结果表明,在IEEE-18和IEEE-30系统节点网络攻击检测中,基于高斯混合模型的FDIA检测相较于SVM的FDIA检测精度更好,但攻击强度和协方差矩阵是关键影响因素。展开更多
文摘提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。
文摘为提高智能电网的安全性,结合传感器量测数据和攻击向量服从正态分布的特性,提出了一种基于高斯混合模型的虚假数据注入攻击(False Data Injection Attacks,FDIA)检测方法。在该方法中,通过EM算法求解出高斯混合模型参数,然后根据判断准则,利用测试数据对高斯混合模型的分类效果进行验证。仿真实验结果表明,在IEEE-18和IEEE-30系统节点网络攻击检测中,基于高斯混合模型的FDIA检测相较于SVM的FDIA检测精度更好,但攻击强度和协方差矩阵是关键影响因素。