The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. Acco...The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.展开更多
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets wit...CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.展开更多
The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the...The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.展开更多
60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin ...60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.展开更多
文摘The structure and catalytic desulfurization characteristics of CeO2-TiO2 mixed oxides were investigated by means ofX-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and catalytic activity tests. According to the results, a CeO2-TiO2solid solution is formed when the mole ratio of cerium to titanium n(Ce):n(Ti) is 5:5 or greater, and the most suitable n(Ce):n(Ti) isdetermined as 7:3, over which the conversion rate of SO2 and the yield of sulfur at 500℃ reach 93% and 99%, respectively.According to the activity testing curve, Ce0.7Ti0.3O2 (n(Ce):n(Ti)=7:3) without any pretreatment can be gradually activated by reagentgas after about 10 min, and reaches a steady activation status 60 min later. The XPS results of Ce0.7Ti0.3O2 after different time ofSO2+CO reaction show that CeO2 is the active component that offers the redox couple Ce4+/Ce3+ and the labile oxygen vacancies, andTiO2 only functions as a catalyst structure stabilizer during the catalytic reaction process. After 48 h of catalytic reaction at 500℃,Ce0.7Ti0.3O2 still maintains a stable structure without being vulcanized, demonstrating its good anti-sulfur poisoning performance.
基金the program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547
文摘CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.
基金the National Natural Science Foundation of China (No.50472039)Hubei Provincial Natural Science Foundation of China (No.2005ABA011)
文摘The golden and ultraviolet-absorbed CeO2-TiO2 film was prepared on soda-lime glass substrate with the thickness of 2 mm via the sol-gel method. The transmission spectra in range of 200 nm-800 nm were measured, and the crystallization, the abrasion and acid resistance were also investigated. The appropriate sol contents and heat-treatment schedule were determined. The results indicate that the appropriate molar ratio of Ce/Ti was 3:5 to 5:6. The ultraviolet-absorbance ability increased with the increase of the Ce/Ti molar ratio, but when the Ce/Ti molar ratio was higher than 1.5, the homogeneity of the film was deteriorated. With the increase of heat-treatment temperature, the main wavelengths of the color of the coated glasses were equal, but the color' s saturation decreased; the transmission peaks were the same, while the intensity of the peaks decreased. The roughness, abrasion and acid resistance of the film were also enhanced at the same time. The appropriate heat- treatment temperature may be 340℃.
基金the National Natural Science Foundation of China(No.51032005)the Fundamental Research Funds for the Central Universities(Wuhan University of Technology)+1 种基金the China Postdoctoral Science Foundation(No.2012M511285)the Fund for the Young Innovative Team(Hubei University of Education)(No.2012KQ05)
文摘60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.