目的:观察深低温停循环对脑组织ATP酶活力及结构的影响。方法:18只实验犬随机分为3组,深低温停循环(DHCA)组,DHCA+逆行脑灌注(RCP)组,DHCA+顺行间断脑灌注(IACP)组。降温至18℃后停循环90 m in,在停循环前、后及再循环后留取血液标本作...目的:观察深低温停循环对脑组织ATP酶活力及结构的影响。方法:18只实验犬随机分为3组,深低温停循环(DHCA)组,DHCA+逆行脑灌注(RCP)组,DHCA+顺行间断脑灌注(IACP)组。降温至18℃后停循环90 m in,在停循环前、后及再循环后留取血液标本作ATP酶活力和乳酸含量测定。手术结束时取海马组织作透射电镜检查。结果:停循环后,DHCA和RCP组ATP酶活力值显著降低,乳酸含量显著升高;IACP组ATP酶活力值无显著差异,乳酸含量仅在停循环后45 m in时显著升高。结论:DHCA时间较长时,脑组织会发生缺血缺氧性损伤;RCP对脑组织有保护作用,但易发生神经细胞水肿;IACP的脑保护效果较为理想。展开更多
An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to impr...An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.展开更多
OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into...OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into the hippocampus.METHODS: Ninety male Wistar rats(age ≥10 months)were selected and injected with Aβ25-35 into their hippocampi to establish model animals,which were randomly divided into six groups including a sham-operated group(blank group), a model group, a donepezil HCL group(Western Medicinegroup),and ahigh/general/dilute concentrations of Yizhitongxuan decoction groups(TCMⅠⅡⅢgroup).The Morris watermaze was used to examine the learning and memory abilities of rats in each group by place navigation and spatial probe tests.Then, the rats were sacrificed to collect the hippocampi for biochemical tests, using western blotting to detect the expression of Gαq/11 and an ultramicro Na+-K+-ATP enzyme kit to measure Na+-K+-ATP enzyme activity.RESULTS:Yizhitongxuan decoction improved model rats' learning and memory abilities, and increased the expression of Gαq/11 in the hippocampus and the level of Na+-K+-ATP enzyme activity in braintissue.CONCLUSION: Yizhitongxuan decoction could improve model rats' learning and memory abilities,and had a regulating effect on the expression of Gαq/11and Na+-K+-ATP enzyme activity.展开更多
文摘目的:观察深低温停循环对脑组织ATP酶活力及结构的影响。方法:18只实验犬随机分为3组,深低温停循环(DHCA)组,DHCA+逆行脑灌注(RCP)组,DHCA+顺行间断脑灌注(IACP)组。降温至18℃后停循环90 m in,在停循环前、后及再循环后留取血液标本作ATP酶活力和乳酸含量测定。手术结束时取海马组织作透射电镜检查。结果:停循环后,DHCA和RCP组ATP酶活力值显著降低,乳酸含量显著升高;IACP组ATP酶活力值无显著差异,乳酸含量仅在停循环后45 m in时显著升高。结论:DHCA时间较长时,脑组织会发生缺血缺氧性损伤;RCP对脑组织有保护作用,但易发生神经细胞水肿;IACP的脑保护效果较为理想。
基金Supported by the Natural Science Foundation of Fujian Province of China (E0810018)
文摘An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.
基金Supported by the Project of Science and Technology in Shandong Universities of Shandong Provincial Education Department(No.J11LF09)
文摘OBJECTIVE: To study the effects of Yizhitongxuan decoction on learning and memory abilities, Gαq/11expression and Na+-K+-ATPenzymeactivityin rat models of Alzheimer's disease(AD) caused by injecting Aβ25-35 into the hippocampus.METHODS: Ninety male Wistar rats(age ≥10 months)were selected and injected with Aβ25-35 into their hippocampi to establish model animals,which were randomly divided into six groups including a sham-operated group(blank group), a model group, a donepezil HCL group(Western Medicinegroup),and ahigh/general/dilute concentrations of Yizhitongxuan decoction groups(TCMⅠⅡⅢgroup).The Morris watermaze was used to examine the learning and memory abilities of rats in each group by place navigation and spatial probe tests.Then, the rats were sacrificed to collect the hippocampi for biochemical tests, using western blotting to detect the expression of Gαq/11 and an ultramicro Na+-K+-ATP enzyme kit to measure Na+-K+-ATP enzyme activity.RESULTS:Yizhitongxuan decoction improved model rats' learning and memory abilities, and increased the expression of Gαq/11 in the hippocampus and the level of Na+-K+-ATP enzyme activity in braintissue.CONCLUSION: Yizhitongxuan decoction could improve model rats' learning and memory abilities,and had a regulating effect on the expression of Gαq/11and Na+-K+-ATP enzyme activity.