期刊文献+
共找到200,144篇文章
< 1 2 250 >
每页显示 20 50 100
Heat shock induction of a 65 kDa ATP-binding proteinase in rat C6 glioma cells 被引量:8
1
作者 XU CUN SHUAN WEI MING ZHANG +3 位作者 DIETER TECHEL MARCO MEYER YAN ZHANG LI LUDGER RENSING (Department of Biology, Henan Normal University,Xinxiang 453002)(Institute of Cell Biology, Bremen University, D-28359 Bremen, Germany) 《Cell Research》 SCIE CAS CSCD 1999年第2期135-144,共10页
The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATP-BPases) of the heat-shocked (44 ℃ for 30 min, recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their mol... The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATP-BPases) of the heat-shocked (44 ℃ for 30 min, recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their molecular masses, isoelectric points (pI), pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9 amino acid sequence was determined by Edman degradation, but no homologies to other proteins in the protein data bases were found. 30 and 31 kDa proteinases can be cleaved from the 45, 55 and 65 kDa proteinases to which they are linked. A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed. 展开更多
关键词 Rat C6 glioma cells atp-binding proteinases heat shock induction native proteinase gels
下载PDF
Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain
2
作者 Xiaoyu Zhang Yuqi Liu +6 位作者 Fangxia Xu Chengcheng Zhou Kaimei Lu Bin Fang Lijuan Wang Lina Huang Zifeng Xu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2682-2696,共15页
Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ... Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain. 展开更多
关键词 dorsal root ganglion heterogeneous nuclear ribonucleoprotein F neuropathic pain protein arginine methyltransferase-6 sensory neurons
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
3
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Spastin and alsin protein interactome analyses begin to reveal key canonical pathways and suggest novel druggable targets
4
作者 Benjamin R.Helmold Angela Ahrens +1 位作者 Zachary Fitzgerald P.Hande Ozdinler 《Neural Regeneration Research》 SCIE CAS 2025年第3期725-739,共15页
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan... Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous. 展开更多
关键词 ALS2 alsin amyotrophic lateral sclerosis hereditary spastic paraplegia neurodegenerative diseases personalized medicine precision medicine protein interactome protein-protein interactions SPAST SPASTIN
下载PDF
AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice
5
作者 Zhengwei Hu Jing Yang +7 位作者 Shuo Zhang Mengjie Li Chunyan Zuo Chengyuan Mao Zhongxian Zhang Mibo Tang Changhe Shi Yuming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第1期253-264,共12页
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed... The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease. 展开更多
关键词 adeno-associated virus Alzheimer’s disease APP/PS1 mice carboxyl terminus of Hsp70 interacting protein gene therapy
下载PDF
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
6
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
下载PDF
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
7
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? 被引量:5
8
作者 Aleksandra Adamska Marco Falasca 《World Journal of Gastroenterology》 SCIE CAS 2018年第29期3222-3238,共17页
Pancreatic ductal adenocarcinoma(PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasin... Pancreatic ductal adenocarcinoma(PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasing understanding of the mechanisms of chemoresistance in cancer and the role of ATPbinding cassette(ABC) transporters in this resistance, the therapeutic potential of their pharmacological inhibition has not been successfully exploited yet. In spite of the discovery of potent pharmacological modulators of ABC transporters, the results obtained in clinical trials have been so far disappointing, with high toxicity levels impairing their successful administration to the patients. Critically, although ABC transporters have been mostly studied for their involvement in development of multidrug resistance(MDR), in recent years the contribution of ABC transporters to cancer initiation and progression has emerged as an important area of research, the understanding of which could significantly influence the development of more specific and efficient therapies. In this review, we explore the role of ABC transporters in the development and progression of malignancies, with focus on PDAC. Their established involvement in development of MDR will be also presented. Moreover, an emerging role for ABC transporters as prognostic tools for patients' survival will be discussed, demonstrating the therapeutic potential of ABC transporters in cancer therapy. 展开更多
关键词 PANCREATIC DUCTAL ADENOCARCINOMA MULTIDRUG resistance atp-binding CASSETTE transporters Targeted therapies PANCREATIC DUCTAL ADENOCARCINOMA prognosis Predictive markers
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:2
9
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
ZBM30 suppresses atherosclerosis through up-regulating ATP-binding cassette A1 and G1
10
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期47-47,共1页
Atherosclerosis is the most common cause of cardiovascular diseases, such as myocardial infarction and stroke. The aim of this study was to investigate the effects of a novel compound ZBM30 on atherosclerosis in ApoE-... Atherosclerosis is the most common cause of cardiovascular diseases, such as myocardial infarction and stroke. The aim of this study was to investigate the effects of a novel compound ZBM30 on atherosclerosis in ApoE- deficient mice and its associated mechanism. ApoE-deficient mice (6 weeks old), fed an atherogenic high-fat and high cholesterol diet for 8 weeks, were divided into three groups. Two groups were orally administrated ZBM30 (10, 30 nag ~ kg-1) daily for 12 weeks, while the control group was administered saline. Atherosclerotic lesions with en face aortas were evaluated by Sudan IV staining, and lesion areas in aortic sinuses were evaluated by oil red O staining. Necrotic core areas and fibrous cap areas in the lesion were evaluated by henaatoxylin and eosin (HE) staining and Masson' s trichronae staining in the aorta sinuses. The effects of ZBM30 on cholesterol accumulation in naacrophages and cholesterol transporters: ATP binding cassette A1 (ABCA1) and ATP binding cassette G1 (AB- CG1) were evaluated by oil red O assay, 3H-cholesterol efflux assay, Western blot, and real-time PCR on macro- phage cell lines: Raw 264.7 and THP-1. Inanauno-fluoresces was used to determine the ABCA1 expression in naac- rophage in aorta sinuses. Luciferase reporters of wild type and mutant types of ABCA1 promoter were constructed to determine the regulatory domain of ZBM30 on ABCA1 promoter. Results showed that, compared with the control group, en face lesions in ZBM30 group ( 10, 30 mg · kg^-1 ) were reduced 54.96 ± 10.06% and 71.50 ± 15.37% respectively, and aorta sinus lesions were reduced 41.85 ± 11.21% and 82.23 ± 8.25% respectively. Necrotic core areas in the ZBM30 group were markedly reduced and fibrous cap areas were not changed. Oil red O staining and 3 H-cholesterol efflux assays on Raw 264.7 cell line revealed that ZBM30 significantly attenuated the cholesterol accumulation in naacrophages by enhancing apolipoprotein AI and HDL mediated cholesterol efflux. Furthermore, ZBM30 induced the protein and naRNA expression of cholesterol transporters such as ABCA1 and ABCG1. Inanauno- fluoresces experiment revealed that ZBM30 induced the ABCA1 expression in naacrophage in the lesion, which is consistent with the results in vitro. Luciferase reporter assay revealed that ZBM30 exerted its effect on ABCA1 via liver X receptor (LXR) binding domain. In conclusion, ZBM30 suppresses atherosclerosis through up-regulating cholesterol efflux via ABCA1 and ABCG1 transporters in ApoE-deficient mice. 展开更多
关键词 ATHEROSCLEROSIS macrophage cholesterol EFFLUX atp-binding CASSETTE A1 atp-binding CASSETTE G1 Liver X receptor
下载PDF
Major royal-jelly proteins intake modulates immune functions and gut microbiota in mice 被引量:2
11
作者 Hang Wu Shican Zhou +7 位作者 Wenjuan Ning Xiao Wu Xiaoxiao Xu Zejin Liu Wenhua Liu Kun Liu Lirong Shen Junpeng Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期444-453,共10页
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer... In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability. 展开更多
关键词 Major royal-jelly proteins Immunity ESTROGEN Gut microbiota Cytokines
下载PDF
The pathogenic mechanism of TAR DNA-binding protein 43(TDP-43)in amyotrophic lateral sclerosis 被引量:2
12
作者 Xinxin Wang Yushu Hu Renshi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期800-806,共7页
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t... The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation). 展开更多
关键词 amyotrophic lateral sclerosis axonal transport liquid-liquid phase separation noncellular autonomous functions oxidative stress PATHOGENESIS post-translational modification protein quality control system stress granules TAR DNA-binding protein 43(TDP-43)
下载PDF
Impact of apolipoprotein E isoforms on sporadic Alzheimer's disease:beyond the role of amyloid beta 被引量:3
13
作者 Madia Lozupone Francesco Panza 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期80-83,共4页
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders... The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype. 展开更多
关键词 Alzheimer's disease AMYLOID-BETA apolipoprotein E DEMENTIA glymphatic transport LIPIDS neuropsychiatric symptoms neurovascular unit tau protein
下载PDF
GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean 被引量:1
14
作者 Zhuang Li Qichao Tu +7 位作者 Xiangguang Lyu Qican Cheng Ronghuan Ji Chao Qin Jun Liu Bin Liu Hongyu Li Tao Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期432-442,共11页
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate... Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization. 展开更多
关键词 DELLA protein GmRGAs GmSTFs Plant height SOYBEAN
下载PDF
Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders:current knowledge and future directions 被引量:2
15
作者 Yumei Yue Xiaodan Zhang +2 位作者 Wen Lv Hsin-Yi Lai Ting Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1973-1980,共8页
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli... Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy. 展开更多
关键词 atypical parkinsonism glymphatic system magnetic resonance imaging neurotoxic proteins Parkinson’s disease
下载PDF
Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiati 被引量:3
16
作者 Pakkath Narayanan Arya Iyyappan Saranya Nagarajan Selvamurugan 《World Journal of Stem Cells》 SCIE 2024年第2期102-113,共12页
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th... Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development. 展开更多
关键词 BONE Mesenchymal stem cells Osteogenic differentiation WNT/Β-CATENIN Bone morphogenetic proteins
下载PDF
Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers 被引量:1
17
作者 Kaiwen Lei Hao Wu +4 位作者 Jerry W Spears Xi Lin Xi Wang Xue Bai Yanling Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1329-1337,共9页
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.... This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein. 展开更多
关键词 IRON yellow-feathered broiler antioxidant function intestinal morphology tight junction protein
下载PDF
Calmodulins and calmodulin-like proteins-mediated plant organellar calcium signaling networks under abiotic stress 被引量:1
18
作者 Shuang Liu Liyan Zhao +4 位作者 Maozi Cheng Jinfeng Sun Xiaomeng Ji Aman Ullah Guosheng Xie 《The Crop Journal》 SCIE CSCD 2024年第5期1321-1332,共12页
Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting... Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles. 展开更多
关键词 Abiotic stress CALMODULIN Calmodulin-like protein Organellar calcium signaling pathway
下载PDF
Inhibiting NF-κB increases cholesterol efflux from THP-1 derived-foam cells treated with AngⅡ via up-regulating the expression of ATP-binding cassette transporter A1
19
作者 Kun Liu Yanfu Wang Zhijian Chen Yuhua Liao Xiang Gao Jian Chen 《Journal of Nanjing Medical University》 2008年第4期211-216,共6页
Objective: To study the role of nuclear factor-kappa B(NF- κB) in cholesterol efflux from THP-1 derived-foam cells treated with Angiotensin Ⅱ(Ang Ⅱ ). Methods:Cultured THP-1 derived-foam cells were treated wi... Objective: To study the role of nuclear factor-kappa B(NF- κB) in cholesterol efflux from THP-1 derived-foam cells treated with Angiotensin Ⅱ(Ang Ⅱ ). Methods:Cultured THP-1 derived-foam cells were treated with Ang Ⅱ or preincubated with tosyl-phenylalanine chloromethyl-ketone(TPCK) NF- κB inhibitor. The levels of activated NF- κB in the cells were examined by sandwich ELISA, Cellular cholesterol content was studied by electron microscopy scanning and zymochemistry via fluorospectrophotometer and cholesterol effiux was detected by scintillation counting technique. ABCA1 mRNA and protein were quantified by RT-PCR and Western blotting. Results:Addition of TPCK to the cells before Ang Ⅱ stimulation attenuated the response of NF- κB p65 nuclear translocation induced by Ang Ⅱ and showed no peak in foam cells group and caused a reduction in cholesterol content and an increase in cholesterol efflux by 24.1%(P〈 0.05) and 41.1%(P〈 0.05) respectively, when compared with Ang Ⅱ group. In accordance, the ABCA1 mRNA and protein were increased by 30% and 19%(P 〈 0.05) respectively, when compared with Ang Ⅱ group. Conclusion:Ang Ⅱ can downregulate ABCA1 in THP-1 derived-foam cells via NF- K B, which leads to less cholesterol effiux and the increase of cholesterol content with the consequence of the promotion of atherosclerosis. 展开更多
关键词 Angiotensin nuclear factor- kappa B atp-binding cassette transporter A1 cholesterol effiux ATHEROSCLEROSIS
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
20
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION ANTIOXIDANT Bitter taste
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部