BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the r...BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the radiation-induced changes in the expression of K_(ATP)channel subunits in the mouse liver to understand the potential role of K_(ATP)channels in radiation injury.METHODS Adult C57BL/6 mice were randomly exposed toγ-rays at 0 Gy(control,n=2),0.2 Gy(n=6),1 Gy(n=6),or 5 Gy(n=6).The livers were removed 3 and 24 h after radiation exposure.Hematoxylin and eosin staining was used for morphological observation;immunohistochemical staining was applied to determine the expression of K_(ATP)channel subunits in the liver tissue.RESULTS Compared with the control group,the livers exposed to 0.2 Gyγ-ray showed an initial increase in the expression of Kir6.1 at 3 h,followed by recovery at 24 h after exposure.Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h.However,the expression of Kir6.2,SUR1,or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses.CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses,suggesting a potential role for them in radiation-induced liver injury.展开更多
The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were in...The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.展开更多
The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardi...The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardial protection against ischemia,and insulin secretion.The aim of this review is to get insight into the novel roles of KATPchannels in Parkinson's disease(PD),with consideration of the specificities KATPchannels in the central nervous system(CNS), such as the control of neuronal excitability,action potential,mitochondrial function and neurotransmitter release.展开更多
BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,S...BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,SU2A and SUR2B.A number of cells and tissues have been revealed to contain these channels including hepatocytes,but detailed localization of these subunits in different types of liver cells was still uncertain.AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography.Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis,seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining.Four of Wistar rats were used for the isolation of hepatic stellate cells(HSCs)and Kupffer cells for both primary culture and immunocytochemistry.RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits,i.e.Kir6.1,Kir6.2,SUR1,SUR2A,and SUR2B,were detected in liver.Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells,while SUR1,SUR2A,and SUR2B were mainly localized to sinusoidal lining cells,such as HSCs,Kupffer cells,and sinusoidal endothelial cells.Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane.Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs.These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells.The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells.In addition,five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels.This is applicable to hepatocytes,HSCs,various types of Kupffer cells and sinusoidal endothelial cells.展开更多
Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurologic...Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.展开更多
Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were...Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.展开更多
In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) ...In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .展开更多
A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulati...A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.展开更多
The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect th...The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.展开更多
AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to ...AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation.METHODS:Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region.To study outward K + currents,the perforated patch clamp technique was employed.To assess LES resting tone and relaxation,muscle strips were mounted in perfused organ baths.RESULTS:(1) Electrophysiological recordings from isolated cells:(a) CM was more depolarized than SM (-39.7 ± 0.8mV vs-48.1 ± 1.6 mV,P < 0.001),and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF,P > 0.05);(b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF,P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF,P > 0.05);(c) SNP added in the presence of the BK Ca antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2,P > 0.05);and (d) L-NNA caused a small insignificant inhibition of outward K + currents in both muscles;and (2) Muscle strip studies:(a) Blockade of the nerves with tetrodotoxin (TTX),or BK Ca with IbTX had no significant effect on resting tone of either muscle;and (b) SNP reduced tone in both muscles,and was unaffected by the presence of TTX or IbTX.CONCLUSION:Exogenous NO activates BK Ca only in CM of the cat.However,as opposed to other species,exogenous NO-induced relaxation is predominantly by a non-BK Ca mechanism,and endogenous NO has minimal effect on resting tone.展开更多
Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell prolife...Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.展开更多
Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms...Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.展开更多
TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous s...TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous system suggests that these channels are critically involved in neurological disorders. It has become apparent in the past decade that TASK channels play critical roles for the development of various neurological disorders. In this review, I describe evidence for their roles in ischemia, epilepsy, learning/memory/cognition and apoptosis.展开更多
基金Supported by the Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University,Nagasaki University.
文摘BACKGROUND ATP sensitive K+(K_(ATP))channels are ubiquitously distributed in various of cells and tissues,including the liver.They play a role in the pathogenesis of myocardial and liver ischemia.AIM To evaluate the radiation-induced changes in the expression of K_(ATP)channel subunits in the mouse liver to understand the potential role of K_(ATP)channels in radiation injury.METHODS Adult C57BL/6 mice were randomly exposed toγ-rays at 0 Gy(control,n=2),0.2 Gy(n=6),1 Gy(n=6),or 5 Gy(n=6).The livers were removed 3 and 24 h after radiation exposure.Hematoxylin and eosin staining was used for morphological observation;immunohistochemical staining was applied to determine the expression of K_(ATP)channel subunits in the liver tissue.RESULTS Compared with the control group,the livers exposed to 0.2 Gyγ-ray showed an initial increase in the expression of Kir6.1 at 3 h,followed by recovery at 24 h after exposure.Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h.However,the expression of Kir6.2,SUR1,or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses.CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses,suggesting a potential role for them in radiation-induced liver injury.
基金supported by grants from Natural Science Foundation of Hubei Province,China (No. 2010CDB096)the National Key Technology R&D Program of the 12th National Five-year Development Plan of China (No. 2012BAI05B01)
文摘The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.
基金the National Natural Science Foundation of China(No.30700251);the National Basic Research Development Program of China(No.2006CB500706);the Young Excellent Scholar(2007-2008)Program of Shanghai Jiaotong University School of Medicine.
文摘The ATP-sensitive potassium(KATP)channels which extensively distribute in diverse tissues(e.g.vascular smooth muscle,cardiac cells,and pancreas)are well-established for characteristics like vasodilatation,myocardial protection against ischemia,and insulin secretion.The aim of this review is to get insight into the novel roles of KATPchannels in Parkinson's disease(PD),with consideration of the specificities KATPchannels in the central nervous system(CNS), such as the control of neuronal excitability,action potential,mitochondrial function and neurotransmitter release.
基金Supported by the Program of the network-type joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University,Nagasaki University,and Fukushima Medical University
文摘BACKGROUND ATP-sensitive K^+(KATP)channels were originally found in cardiac myocytes by Noma in 1983.KATP channels were formed by potassium ion-passing poreforming subunits(Kir6.1,Kir6.2)and regulatory subunits SUR1,SU2A and SUR2B.A number of cells and tissues have been revealed to contain these channels including hepatocytes,but detailed localization of these subunits in different types of liver cells was still uncertain.AIM To investigate the expression of KATP channel subunits in rat liver and their localization in different cells of the liver.METHODS Rabbit anti-rat SUR1 peptide antibody was raised and purified by antigen immunoaffinity column chromatography.Four of Sprague-Dawley rats were used for liver protein extraction for immunoblot analysis,seven of them were used for immunohistochemistry both for the ABC method and immunofluorescence staining.Four of Wistar rats were used for the isolation of hepatic stellate cells(HSCs)and Kupffer cells for both primary culture and immunocytochemistry.RESULTS Immunoblot analysis showed that the five kinds of KATP channel subunits,i.e.Kir6.1,Kir6.2,SUR1,SUR2A,and SUR2B,were detected in liver.Immunohistochemical staining showed that Kir6.1 and Kir6.2 were weakly to moderately expressed in parenchymal cells and sinusoidal lining cells,while SUR1,SUR2A,and SUR2B were mainly localized to sinusoidal lining cells,such as HSCs,Kupffer cells,and sinusoidal endothelial cells.Immunoreactivity for SUR2A and SUR2B was expressed in the hepatocyte membrane.Double immunofluorescence staining further showed that the pore-forming subunits Kir6.1 and/or Kir6.2 colocalized with GFAP in rat liver sections and primary cultured HSCs.These KATP channel subunits also colocalized with CD68 in liver sections and primary cultured Kupffer cells.The SUR subunits colocalized with GFAP in liver sections and colocalized with CD68 both in liver sections and primary cultured Kupffer cells.In addition,five KATP channel subunits colocalized with SE-1 in sinusoidal endothelial cells.CONCLUSION Observations from the present study indicated that KATP channel subunits expressed in rat liver and the diversity of KATP channel subunit composition might form different types of KATP channels.This is applicable to hepatocytes,HSCs,various types of Kupffer cells and sinusoidal endothelial cells.
基金NJ Governor’s Council for Medical Research and Treatment of Autism predoctoral fellowship (CAUT23AFP015) to ABNational Science Foundation grant (2030348) to FS。
文摘Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
文摘Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.
基金Supported by the National Natural Science Foundation of China(61001167,61172149)~~
文摘In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .
基金National Natura1 Science Foundation of China (No. 39870372),StateKey Basic Research and Development Project (No.G1999011700)
文摘A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.
基金supported by grants from the National Natural Science Foundation of China (No. 81072001)the Natural Science Foundation of Hubei Province, China (No.2011CDB556)
文摘The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.
基金Supported by A Postgraduate Fellowship Award to L'Heureux MC from the Department of Medicine,University of Torontoa doctoral research studentship and an Operating Grant from the Canadian Institutes of Health Research(Gaisano HY and Diamant NE)
文摘AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation.METHODS:Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region.To study outward K + currents,the perforated patch clamp technique was employed.To assess LES resting tone and relaxation,muscle strips were mounted in perfused organ baths.RESULTS:(1) Electrophysiological recordings from isolated cells:(a) CM was more depolarized than SM (-39.7 ± 0.8mV vs-48.1 ± 1.6 mV,P < 0.001),and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF,P > 0.05);(b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF,P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF,P > 0.05);(c) SNP added in the presence of the BK Ca antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2,P > 0.05);and (d) L-NNA caused a small insignificant inhibition of outward K + currents in both muscles;and (2) Muscle strip studies:(a) Blockade of the nerves with tetrodotoxin (TTX),or BK Ca with IbTX had no significant effect on resting tone of either muscle;and (b) SNP reduced tone in both muscles,and was unaffected by the presence of TTX or IbTX.CONCLUSION:Exogenous NO activates BK Ca only in CM of the cat.However,as opposed to other species,exogenous NO-induced relaxation is predominantly by a non-BK Ca mechanism,and endogenous NO has minimal effect on resting tone.
基金supported by a grant from the Natural Science Foundation of China(30772128)
文摘Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.
基金the Natural Science Foundation of Liaoning Province,No.20052097,2008225010
文摘Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.
文摘TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous system suggests that these channels are critically involved in neurological disorders. It has become apparent in the past decade that TASK channels play critical roles for the development of various neurological disorders. In this review, I describe evidence for their roles in ischemia, epilepsy, learning/memory/cognition and apoptosis.