BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(X...BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.展开更多
Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to pert...Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
基金Supported by Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD011)
文摘BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology.Long noncoding RNAs(lncRNAs)are active participators of diabetic nephropathy(DN).X inactive specific transcript(XIST)expression has been reported to be elevated in the serum of DN patients.AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell(RTEC)pyroptosis in DN.METHODS A DN rat model was established through streptozotocin injection,and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST.Renal metabolic and biochemical indices were detected,and pathological changes in the renal tissue were assessed.The expression of indicators related to inflammation and pyroptosis was also detected.High glucose(HG)was used to treat HK2 cells,and cell viability and lactate dehydrogenase(LDH)activity were detected after silencing XIST.The subcellular localization and downstream mechanism of XIST were investigated.Finally,a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3(NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p(miR-15b-5p)/Toll-like receptor 4(TLR4)axis.RESULTS XIST was highly expressed in the DN models.XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury.The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells;cell viability was decreased and LDH activity was increased after HGtreatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically,XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promotingmiR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect ofsilencing XIST on HG-induced RTEC pyroptosis.CONCLUSIONSilencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury inDN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
基金supported by the State Key Program of National Natural Science of China (81930110)Military Logistics Research Project on Health Special Project (23BJZ33)the Key Project at Central Government Level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302)。
文摘Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.