Cognitive radio has been designed for solving the problem of spectrum scarcity by using the spectrum of primary users who don’t use their spectrum on that time. For sensing the spectrum, collaborative spectrum sensin...Cognitive radio has been designed for solving the problem of spectrum scarcity by using the spectrum of primary users who don’t use their spectrum on that time. For sensing the spectrum, collaborative spectrum sensing has been utilized because of robustness. In this paper, a new collaborative spectrum method is proposed based on Least Mean Square (LMS) algorithm. In this scheme, the weights of secondary users were updated in time and finally the sensing results were combined in the fusion center based on their trusted weights. Simulation results show that the proposed scheme can significantly reduce the effects of Spectrum Sensing Data Falsification (SSDF) attackers, when they are smart malicious, and even percentage of malicious users are more than trusted users.展开更多
Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers w...Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers without their cooperation.Current consistency-based methods are only valid for one single attacker and are parametersensitive.From the viewpoint of image processing,this paper proposes an algorithm to jointly detect and locate multiple beam stealing attackers based on RSSI(Received Signal Strength Indicator)map without the training process involved in deep learning-based solutions.Firstly,an RSSI map is constructed based on interpolating the raw RSSI data for enabling high-resolution localization while reducing monitoring cost.Secondly,three image processing steps,including edge detection and segmentation,are conducted on the constructed RSSI map to detect and locate multiple attackers without any prior knowledge about the attackers.To evaluate our proposal’s performance,a series of experiments are conducted based on the collected data.Experimental results have shown that in typical parameter settings,our algorithm’s positioning error does not exceed 0.41 m with a detection rate no less than 91%.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while mod...Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.展开更多
The prevalence of diabetes mellitus and its associated complications,particularly diabetic foot pathologies,poses significant healthcare challenges and economic burdens globally.This review synthesises current evidenc...The prevalence of diabetes mellitus and its associated complications,particularly diabetic foot pathologies,poses significant healthcare challenges and economic burdens globally.This review synthesises current evidence on the surgical management of the diabetic foot,focusing on the interplay between neuropathy,ischemia,and infection that commonly culminates in ulcers,infections,and,in severe cases,amputations.The escalating incidence of diabetes mellitus underscores the urgency for effective management strategies,as diabetic foot complications are a leading cause of hospital admissions among diabetic patients,significantly impacting morbidity and mortality rates.This review explores the pathophysiological mechanisms underlying diabetic foot complications and further examines diabetic foot ulcers,infections,and skeletal pathologies such as Charcot arthropathy,emphasising the critical role of early diagnosis,comprehensive management strategies,and interdisciplinary care in mitigating adverse outcomes.In addressing surgical interventions,this review evaluates conservative surgeries,amputations,and reconstructive procedures,highlighting the importance of tailored approaches based on individual patient profiles and the specific characteristics of foot pathologies.The integration of advanced diagnostic tools,novel surgical techniques,and postoperative care,including offloading and infection control,are discussed in the context of optimising healing and preserving limb function.展开更多
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ...Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.展开更多
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
Various organizations store data online rather than on physical servers.As the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also increases.Different resear...Various organizations store data online rather than on physical servers.As the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also increases.Different researchers worked on different algorithms to protect cloud data from replay attacks.None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack.This study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay attacks.The program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original text.In the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the backend.This mechanism has the benefit of enhancing the detectability of replay attacks.Nevertheless,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy is.At the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is ...Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.展开更多
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu...Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.展开更多
Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing s...Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing significant challenges.In response,various protection approaches have been developed to secure,authenticate,and ensure the integrity of digital videos.This study provides a comprehensive survey of the challenges associated with maintaining the confidentiality,integrity,and availability of video content,and examining how it can be manipulated.It then investigates current developments in the field of video security by exploring two critical research questions.First,it examine the techniques used by adversaries to compromise video data and evaluate their impact.Understanding these attack methodologies is crucial for developing effective defense mechanisms.Second,it explores the various security approaches that can be employed to protect video data,enhancing its transparency,integrity,and trustworthiness.It compares the effectiveness of these approaches across different use cases,including surveillance,video on demand(VoD),and medical videos related to disease diagnostics.Finally,it identifies potential research opportunities to enhance video data protection in response to the evolving threat landscape.Through this investigation,this study aims to contribute to the ongoing efforts in securing video data,providing insights that are vital for researchers,practitioners,and policymakers dedicated to enhancing the safety and reliability of video content in our digital world.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,t...Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.展开更多
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o...The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.展开更多
文摘Cognitive radio has been designed for solving the problem of spectrum scarcity by using the spectrum of primary users who don’t use their spectrum on that time. For sensing the spectrum, collaborative spectrum sensing has been utilized because of robustness. In this paper, a new collaborative spectrum method is proposed based on Least Mean Square (LMS) algorithm. In this scheme, the weights of secondary users were updated in time and finally the sensing results were combined in the fusion center based on their trusted weights. Simulation results show that the proposed scheme can significantly reduce the effects of Spectrum Sensing Data Falsification (SSDF) attackers, when they are smart malicious, and even percentage of malicious users are more than trusted users.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.61671471)。
文摘Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers without their cooperation.Current consistency-based methods are only valid for one single attacker and are parametersensitive.From the viewpoint of image processing,this paper proposes an algorithm to jointly detect and locate multiple beam stealing attackers based on RSSI(Received Signal Strength Indicator)map without the training process involved in deep learning-based solutions.Firstly,an RSSI map is constructed based on interpolating the raw RSSI data for enabling high-resolution localization while reducing monitoring cost.Secondly,three image processing steps,including edge detection and segmentation,are conducted on the constructed RSSI map to detect and locate multiple attackers without any prior knowledge about the attackers.To evaluate our proposal’s performance,a series of experiments are conducted based on the collected data.Experimental results have shown that in typical parameter settings,our algorithm’s positioning error does not exceed 0.41 m with a detection rate no less than 91%.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)No.2015R1A3A2031159,2016R1A5A1008055.
文摘Existing web-based security applications have failed in many situations due to the great intelligence of attackers.Among web applications,Cross-Site Scripting(XSS)is one of the dangerous assaults experienced while modifying an organization's or user's information.To avoid these security challenges,this article proposes a novel,all-encompassing combination of machine learning(NB,SVM,k-NN)and deep learning(RNN,CNN,LSTM)frameworks for detecting and defending against XSS attacks with high accuracy and efficiency.Based on the representation,a novel idea for merging stacking ensemble with web applications,termed“hybrid stacking”,is proposed.In order to implement the aforementioned methods,four distinct datasets,each of which contains both safe and unsafe content,are considered.The hybrid detection method can adaptively identify the attacks from the URL,and the defense mechanism inherits the advantages of URL encoding with dictionary-based mapping to improve prediction accuracy,accelerate the training process,and effectively remove the unsafe JScript/JavaScript keywords from the URL.The simulation results show that the proposed hybrid model is more efficient than the existing detection methods.It produces more than 99.5%accurate XSS attack classification results(accuracy,precision,recall,f1_score,and Receiver Operating Characteristic(ROC))and is highly resistant to XSS attacks.In order to ensure the security of the server's information,the proposed hybrid approach is demonstrated in a real-time environment.
文摘The prevalence of diabetes mellitus and its associated complications,particularly diabetic foot pathologies,poses significant healthcare challenges and economic burdens globally.This review synthesises current evidence on the surgical management of the diabetic foot,focusing on the interplay between neuropathy,ischemia,and infection that commonly culminates in ulcers,infections,and,in severe cases,amputations.The escalating incidence of diabetes mellitus underscores the urgency for effective management strategies,as diabetic foot complications are a leading cause of hospital admissions among diabetic patients,significantly impacting morbidity and mortality rates.This review explores the pathophysiological mechanisms underlying diabetic foot complications and further examines diabetic foot ulcers,infections,and skeletal pathologies such as Charcot arthropathy,emphasising the critical role of early diagnosis,comprehensive management strategies,and interdisciplinary care in mitigating adverse outcomes.In addressing surgical interventions,this review evaluates conservative surgeries,amputations,and reconstructive procedures,highlighting the importance of tailored approaches based on individual patient profiles and the specific characteristics of foot pathologies.The integration of advanced diagnostic tools,novel surgical techniques,and postoperative care,including offloading and infection control,are discussed in the context of optimising healing and preserving limb function.
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU 241085.
文摘Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate.
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2023-811.
文摘Various organizations store data online rather than on physical servers.As the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also increases.Different researchers worked on different algorithms to protect cloud data from replay attacks.None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack.This study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay attacks.The program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original text.In the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the backend.This mechanism has the benefit of enhancing the detectability of replay attacks.Nevertheless,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy is.At the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
文摘Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.
基金Science and Technology Innovation 2030 Program(2018AAA0101605).
文摘Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.
基金funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Action(MSCA)grant agreement No.101109961.
文摘Videos represent the most prevailing form of digital media for communication,information dissemination,and monitoring.However,theirwidespread use has increased the risks of unauthorised access andmanipulation,posing significant challenges.In response,various protection approaches have been developed to secure,authenticate,and ensure the integrity of digital videos.This study provides a comprehensive survey of the challenges associated with maintaining the confidentiality,integrity,and availability of video content,and examining how it can be manipulated.It then investigates current developments in the field of video security by exploring two critical research questions.First,it examine the techniques used by adversaries to compromise video data and evaluate their impact.Understanding these attack methodologies is crucial for developing effective defense mechanisms.Second,it explores the various security approaches that can be employed to protect video data,enhancing its transparency,integrity,and trustworthiness.It compares the effectiveness of these approaches across different use cases,including surveillance,video on demand(VoD),and medical videos related to disease diagnostics.Finally,it identifies potential research opportunities to enhance video data protection in response to the evolving threat landscape.Through this investigation,this study aims to contribute to the ongoing efforts in securing video data,providing insights that are vital for researchers,practitioners,and policymakers dedicated to enhancing the safety and reliability of video content in our digital world.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China(Grant No.62201605,62341110,U22A2002)in part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Link flooding attack(LFA)is a type of covert distributed denial of service(DDoS)attack.The attack mechanism of LFAs is to flood critical links within the network to cut off the target area from the Internet.Recently,the proliferation of Internet of Things(IoT)has increased the quantity of vulnerable devices connected to the network and has intensified the threat of LFAs.In LFAs,attackers typically utilize low-speed flows that do not reach the victims,making the attack difficult to detect.Traditional LFA defense methods mainly reroute the attack traffic around the congested link,which encounters high complexity and high computational overhead due to the aggregation of massive attack traffic.To address these challenges,we present an LFA defense framework which can mitigate the attack flows at the border switches when they are small in scale.This framework is lightweight and can be deployed at border switches of the network in a distributed manner,which ensures the scalability of our defense system.The performance of our framework is assessed in an experimental environment.The simulation results indicate that our method is effective in detecting and mitigating LFAs with low time complexity.
基金supported by Systematic Major Project of China State Railway Group Corporation Limited(Grant Number:P2023W002).
文摘The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness.