In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the lase...In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.展开更多
文摘In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel !Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test , the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding !Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of !Crl8Ni9Ti welded joints.