利用修改后的适用于固态熔盐堆的RELAP5/MOD4.0系统分析程序,对固态熔盐堆全厂断电ATWS(Anticipated Transient Without Scram)事故进行了分析。主回路系统进行了合理简化建模,模拟系统在全厂断电ATWS事故时非能动余热排出系统有效与否...利用修改后的适用于固态熔盐堆的RELAP5/MOD4.0系统分析程序,对固态熔盐堆全厂断电ATWS(Anticipated Transient Without Scram)事故进行了分析。主回路系统进行了合理简化建模,模拟系统在全厂断电ATWS事故时非能动余热排出系统有效与否两种情况下的瞬态响应过程。分析结果表明:非能动余热排出系统在全厂断电ATWS事故初期作用不明显,但长期作用较明显,投入使用后最终将使堆芯温度和主冷却剂温度达到稳定;对于固态熔盐堆来说,即使非能动余热排出系统失效,燃料元件温度上升也很缓慢,给人员干预采取必要措施提供了超过20天的宽限时间。分析结果表明了固态熔盐堆在应对极端事件时具有高的安全性。展开更多
误提棒未能紧急停堆(Anticipated Transient Without Scram,ATWS)事故是熔盐堆的超设计基准事故之一,以125 MW液态熔盐堆为研究对象,采用RELAP5-TMSR(Reactor Excursion and Leak Analysis Program Thorium Salt Reactor)程序,针对误提...误提棒未能紧急停堆(Anticipated Transient Without Scram,ATWS)事故是熔盐堆的超设计基准事故之一,以125 MW液态熔盐堆为研究对象,采用RELAP5-TMSR(Reactor Excursion and Leak Analysis Program Thorium Salt Reactor)程序,针对误提棒ATWS事故,选取三种停堆策略分析反应堆功率和熔盐温度等关键参数的变化。此外对反应性引入价值、提棒速度和温度系数等若干重要因素也开展了相应的敏感性分析。分析结果表明:维持一回路主泵运行、关闭二回路主泵和三回路风机的停堆策略是三种策略中堆芯熔盐温度最低的;在仅维持一回路主泵运行的情况下,温度极值与反应性引入价值、引入速率及温度反应性系数密切相关,温度峰值随反应性引入价值和提棒速度的增加而增大。展开更多
Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions...Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions represented a typical transient scenario of modular high-temperature reactors(HTRs), called pressurized loss of forced cooling, and anticipated transient without scram.Based on the test parameters, the HTR-10 thermal behaviors under the test conditions were studied with the help of the system analysis code THERMIX. The combination of the test results and the investigation results makes the HTR-10 safety potential better understood. Key phenomena, such as the helium natural circulation and the temperature redistribution in the reactor, were revealed. As the safety feature of most significance, there is a large margin between the maximum fuel temperature and its safety limit in each test. Temperatures of thermocouples in different components were calculated by THERMIX and compared with the test values. The applicability of the code was verified by good agreement obtained from the comparison.展开更多
Thermal expansion behavior was investigated in detail for evaluation of the core support plate expansion reactivity in the ULOHS(Unprotected Loss of Heat Sink)reactor trip failure event.The core support plate expansio...Thermal expansion behavior was investigated in detail for evaluation of the core support plate expansion reactivity in the ULOHS(Unprotected Loss of Heat Sink)reactor trip failure event.The core support plate expansion reactivity plays an important role in the safety evaluation of the ULOHS event.In this paper,a possibility of mechanical restraint was investigated in thermal expansion of the core structure for the prototype FBR(Fast Breeder Reactor)Monju.The reactor core expansion was simulated in a three-dimensional FEA(Finite Element Analysis)model of the RV(Reactor Vessel)considering detailed temperature distribution of the sodium coolant based on the thermal-hydraulic analysis result of the whole core model.It was found that the thermal expansion of the core was not restrained in the ULOHS event,although part of the core structure is mechanically restrained.展开更多
The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimate...The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.展开更多
文摘利用修改后的适用于固态熔盐堆的RELAP5/MOD4.0系统分析程序,对固态熔盐堆全厂断电ATWS(Anticipated Transient Without Scram)事故进行了分析。主回路系统进行了合理简化建模,模拟系统在全厂断电ATWS事故时非能动余热排出系统有效与否两种情况下的瞬态响应过程。分析结果表明:非能动余热排出系统在全厂断电ATWS事故初期作用不明显,但长期作用较明显,投入使用后最终将使堆芯温度和主冷却剂温度达到稳定;对于固态熔盐堆来说,即使非能动余热排出系统失效,燃料元件温度上升也很缓慢,给人员干预采取必要措施提供了超过20天的宽限时间。分析结果表明了固态熔盐堆在应对极端事件时具有高的安全性。
文摘误提棒未能紧急停堆(Anticipated Transient Without Scram,ATWS)事故是熔盐堆的超设计基准事故之一,以125 MW液态熔盐堆为研究对象,采用RELAP5-TMSR(Reactor Excursion and Leak Analysis Program Thorium Salt Reactor)程序,针对误提棒ATWS事故,选取三种停堆策略分析反应堆功率和熔盐温度等关键参数的变化。此外对反应性引入价值、提棒速度和温度系数等若干重要因素也开展了相应的敏感性分析。分析结果表明:维持一回路主泵运行、关闭二回路主泵和三回路风机的停堆策略是三种策略中堆芯熔盐温度最低的;在仅维持一回路主泵运行的情况下,温度极值与反应性引入价值、引入速率及温度反应性系数密切相关,温度峰值随反应性引入价值和提棒速度的增加而增大。
基金supported by the Chinese National S&T Major Project(No.ZX069)
文摘Two tests initiated by unscrammed control rod withdrawal were performed on the High Temperature GasCooled Reactor-Test Module(HTR-10) in November 2003 after the reactor achieved its full power, and the test conditions represented a typical transient scenario of modular high-temperature reactors(HTRs), called pressurized loss of forced cooling, and anticipated transient without scram.Based on the test parameters, the HTR-10 thermal behaviors under the test conditions were studied with the help of the system analysis code THERMIX. The combination of the test results and the investigation results makes the HTR-10 safety potential better understood. Key phenomena, such as the helium natural circulation and the temperature redistribution in the reactor, were revealed. As the safety feature of most significance, there is a large margin between the maximum fuel temperature and its safety limit in each test. Temperatures of thermocouples in different components were calculated by THERMIX and compared with the test values. The applicability of the code was verified by good agreement obtained from the comparison.
基金The authors would like to recognize the contribution of Hiroki Yada for the thermal expansion analysis,and also Masaki Minami and Kousuke Araki of NESI for the thermal-hydraulic analysis in this paper.
文摘Thermal expansion behavior was investigated in detail for evaluation of the core support plate expansion reactivity in the ULOHS(Unprotected Loss of Heat Sink)reactor trip failure event.The core support plate expansion reactivity plays an important role in the safety evaluation of the ULOHS event.In this paper,a possibility of mechanical restraint was investigated in thermal expansion of the core structure for the prototype FBR(Fast Breeder Reactor)Monju.The reactor core expansion was simulated in a three-dimensional FEA(Finite Element Analysis)model of the RV(Reactor Vessel)considering detailed temperature distribution of the sodium coolant based on the thermal-hydraulic analysis result of the whole core model.It was found that the thermal expansion of the core was not restrained in the ULOHS event,although part of the core structure is mechanically restrained.
文摘The KHNP (Korea Hydro & Nuclear Power Co.) has developed a multipurpose nuclear safety analysis code called SPACE (the safety and performance analysis code) for nuclear power plants. SPACE code is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. In this paper, LOFT (loss of fluid test) L9-3 experiment using the SPACE code was selected to confirm the capability of SPACE code and the results calculated by the SPACE code are compared with those measured through the experiment. The results were compared with the experimental data and those of the other code simulations. Throughout the simulation result, it was concluded that the SPACE code can effectively simulate LOFT L9-3 experiment.