A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously...A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously. Compared with the conventional AVA inversion based on generalized linear technique, this method does not depend on the initial model and can reach the global minimum. In order to increase the stability of the inversion, low-frequency trends of P-wave and S-wave impedances are built into the inversion. This method has been successfully applied to synthetic and field data. The estimated P-wave and S-wave impedances can be combined to derive other elastic parameters, which are sensitive for lithology identification and fluid prediction.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41004096 and 41230318)
文摘A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously. Compared with the conventional AVA inversion based on generalized linear technique, this method does not depend on the initial model and can reach the global minimum. In order to increase the stability of the inversion, low-frequency trends of P-wave and S-wave impedances are built into the inversion. This method has been successfully applied to synthetic and field data. The estimated P-wave and S-wave impedances can be combined to derive other elastic parameters, which are sensitive for lithology identification and fluid prediction.