期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Water Saving Irrigation Management Practices on Rice Productivity and Methane Emission from Paddy Field 被引量:1
1
作者 Hafsa Jahan Hiya Muhammad Aslam Ali +1 位作者 Md. Abdul Baten Sanjit Chandra Barman 《Journal of Geoscience and Environment Protection》 2020年第9期182-196,共15页
Irrigation water supply is one of the vital components for sustainable rice farming, which is becoming a limiting resource in the changing climatic condition. An experiment was conducted at the research field of Bangl... Irrigation water supply is one of the vital components for sustainable rice farming, which is becoming a limiting resource in the changing climatic condition. An experiment was conducted at the research field of Bangladesh Agricultural University, Mymensingh during dry season from January-June of 2017 to investigate the suitability of Alternate Wet and Dry Irrigation (AWDI) for sustainable rice production and reducing methane emission. The modern rice variety BINA Dhan 10 was used as test crop. There were five irrigation treatments viz. T<sub>1</sub> (saturated condition), T<sub>2</sub> (continuous flooded, 5 cm standing water), T<sub>3</sub> (AWDI-10 cm;irrigated when water level fell 10 cm from surface), T<sub>4</sub> (AWDI-15 cm;irrigated when water level fell 15 cm from surface) and T<sub>5</sub> (AWDI-20 cm;irrigated when water level fell 20 cm from surface). Results of the field trial showed satisfactory grain yield and low seasonal methane emission along with significantly high irrigation water savings (%) in AWDI treated field plots. Among the treatments, T<sub>3</sub> (AWDI-10 cm) and T<sub>4</sub> (AWDI-15 cm) showed higher yield performance (6250kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<span style="color:#FFFFFF;font-family:" white-space:normal;background-color:#d46399;"=""><span style="color: rgb(79, 79, 79);" font-size:14px;white-space:normal;background-color:#ffffff;"=""><sup>-</sup></span></span><sup>1</sup> and 5810 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<sup><span style="white-space:nowrap;">-</span>1</sup>, respectively) with lower CH<sub>4</sub> emission (reduced up to 36% and 40%, respectively) compared to continuous flooded treatment (T2, CF 5 cm water). In AWDI field plots less irrigation frequency (6 - 9) was required which significantly saved the amount of irrigation water (12% - 24%). Although T<sub>5</sub> (AWDI-20 cm) showed the highest water savings (24%) and lowest CH<sub>4</sub> emission (reduced up to 50%);however the lowest grain yield (4283 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<span style="color: rgb(79, 79, 79);" font-size:14px;white-space:normal;background-color:#ffffff;"=""><sup>-</sup></span><sup>1</sup>) was found under this treatment. On the other hand, continuously irrigated (T2, 5 cm standing water) field plot showed lower yield (4783 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup>) but significantly higher methane emissions compared to other treatments during rice cultivation. Water productivity index was also found higher in AWDI treated field plots compared to continuously irrigated field plot. At the reproductive stage of rice plant well-developed aerenchyma tissue was observed in root cortex under the continuous irrigated field plot, which indicates higher diffusion pathway of methane gas from root rhizosphere to the atmosphere compared to other treatments. Therefore, alternate wet and dry irrigation water management practice may be recommended at farmers’ level for sustainable rice production and reducing methane emission during dry winter Boro season which will reduce the cost of production by water saving as well as energy saving. 展开更多
关键词 Water Saving awdi CH4 GWP Rice Paddy
下载PDF
Development of Environment Friendly Paddy Ecosystem for Sustainable Rice Farming through Soil Amendments with Biochar and Alternate Wetting-Drying Irrigations
2
作者 Muhammad Aslam Ali Md. Rajib Hassan +5 位作者 Zubair Al Islam Sanjit Chandra Barman Badiuzzaman Khan Rehana Khatun Hafsa Jahan Hiya Md. Touhidul Islam 《American Journal of Climate Change》 2021年第4期581-596,共16页
Climate change may badly affect the availability of water and soil nutrients to rice plant. Research experiments were conducted at the Environmental Science Departmental field, Bangladesh Agricultural University, Myme... Climate change may badly affect the availability of water and soil nutrients to rice plant. Research experiments were conducted at the Environmental Science Departmental field, Bangladesh Agricultural University, Mymensingh during July 2017 to June 2019, to find out the suitable combination of biochar with inorganic fertilizers for minimizing seasonal yield scaled CH<sub>4</sub> emissions, reducing global warming potentials (GWPs) and sustainable rice farming under feasible irrigation practices. There were ten experimental treatments with different combinations of inorganic NPKS fertilizers and biochar (15 - 30 t/ha) under conventional flooding (CF) and alternate wetting-drying irrigations (AWDI). This study revealed that NPKS fertilization (50% of the recommended doze) with 15 t/ha biochar amendments under AWD irrigation maximized rice yield 6750 kg/ha and 4380 kg/ha in dry boro and wet aman seasons respectively, while the lowest rice yield 1850 kg/ha and 1550 kg/ha were recorded in continuously irrigated control treatment (T<sub>1</sub>) during the dry and wet seasons respectively. Seasonal cumulative CH<sub>4</sub> emission, yield scaled CH<sub>4 </sub>emission and GWPs were suppressed significantly with biochar amendments 15 - 30 t/ha under both conventional and AWDI irrigation systems during the wet and dry seasons of rice cultivation. Significant interactions were observed among biochar amendments and irrigation practices during the dry boro rice cultivation. Dry seasonal cumulative CH<sub>4</sub> emissions were decreased by 14.7%, 18.9% and 24.8% with biochar amendments at 15 t/ha, 20 t/ha and 30 t/ha respectively under conventional irrigation;while cumulative CH<sub>4</sub> emissions were reduced by 10.6%, 26% and 41.6% respectively, under AWDI system. Finally, total global warming potentials (GWPs) were decreased by 6% - 15%, 13% - 30% with biochar amendments under conventional and AWDI irrigations respectively, in wet season;while global warming potentials (GWPs) also decreased by 14% - 25%, 11% - 42% with biochar amendments under conventional and AWDI irrigations, respectively, in the dry boro season. Biochar amendments increased water productivity index to some extent, but AWD irrigations significantly increased water productivity over the conventional irrigation in both wet and dry seasons. After experimental period, it was found that soil porosity, redox status, soil organic carbon (SOC) as well as overall soil properties were improved significantly with biochar amendments and AWD irrigations. Conclusively, biochar amendments @15 - 20 t/ha with half of the recommended inorganic (NPKS) fertilizers under alternate wetting-drying irrigations revealed an environment friendly integrated package approach to reduce seasonal cumulative CH<sub>4</sub> emissions as well as GWPs, while improving rice rhizosphere environment and rice productivity to meet the national food security. 展开更多
关键词 CH4 Flux GWPs awdi Yield Scaled CH4 Emission Dry Boro Rice Rainfed Aman Rice
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部