The AZ31 sheets were prepared by extrusion.The effects of the extrusion processing parameters including the temperature extrusion ratio,and structure of the extrusion die on the microstructure and mechanical propertie...The AZ31 sheets were prepared by extrusion.The effects of the extrusion processing parameters including the temperature extrusion ratio,and structure of the extrusion die on the microstructure and mechanical properties of the as-extruded AZ31 sheets were investigated.The results show that the partial grains grow abnormally.and the mechanical and anisotropic properties of the as-extruded AZ31 sheets have little change at the extrusion temperatures of 380-400℃and the extrusion ratio of 13.3.With the increase of the extrusion ratio,the microstructure of the as-extruded AZ31 sheets by conventional die becomes finer and more uniform,and the elongation rate increases,but the strength decreases and its anisotropy becomes worse.Under the porthole die,finer and more uniform microstructure,higher mechanical properties and better anisotropy can be brought for the as-extruded AZ31 sheets The extruded AZ31 sheets by the porthole die have better anneal process of 300℃and 1 h.展开更多
There have been reports on sheet forming of Mg alloy in industry via the punch and die method; this paper is probably the first formal one for studying the sheet formability of AZ31 employing pressurized gas to press ...There have been reports on sheet forming of Mg alloy in industry via the punch and die method; this paper is probably the first formal one for studying the sheet formability of AZ31 employing pressurized gas to press the sheet into a female die cavity at various elevated temperatures. The results indicate it is feasible to form a rectangular box via pressurized gas from extruded sheets of 0.5 and 1.7 mm thick. The formed box has 1:2 depth over width ratio, which should be large enough when dealing with realistic industrial sheet forming parts. Presently, forming a sheet of 0.5 mm thick is considered a technical challenge by industry, and it is conquered as demonstrated in this paper. Gas forming technique applied to Mg alloy is unprecedented and shows potential for industrial utilization.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same ...The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.展开更多
The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the sti...The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the stir zone of the FSSW AZ31 sheet joints, and all cracks initiate at the stir zone outer edge between the upper and lower sheet. When the cycle force equals 1 kN, the crack propagates along the interface of heat-affected zone and thermo-mechanical zone, simultaneously across the direction of force; while the cycle force equals 3 kN, the crack propagates along the diameter of stir zone and shear failure occurs finally. Moreover, the transverse microsections indicate that there is a tongue-like region at the outer edge of stir zone between the two AZ31 sheets, and the direction of tongue-like region is toward outside of the stirred zone and all fatigue cracks initiate at the tongue-like region.展开更多
A novel method of pulsed magnetic field(PMF)treatment was developed to eliminate the residual stress of rolled magnesium alloy AZ31 sheet in this study.The eff ect of PMF on residual stress of rolled AZ31 sheet was in...A novel method of pulsed magnetic field(PMF)treatment was developed to eliminate the residual stress of rolled magnesium alloy AZ31 sheet in this study.The eff ect of PMF on residual stress of rolled AZ31 sheet was investigated and its mechanism was analyzed.The experimental results revealed that the pulse frequency had a significant impact on residual stress.After 10.0 Hz PMF treatment,the average and maximum reduction rates of residual stress along the rolled direction were 26.6%and 30.3%,respectively.It was found that the dislocation density and parallel dislocation in grains of the rolled sheet increased after it was treated by the pulsed magnetic field.The simulation results showed that the Lorentz force generated by the pulsed magnetic field can lead to basal slip,thereby resulting in local plastic deformation.Besides,the Joule heat produced during the PMF treatment was conducive to the elimination of residual stress.展开更多
Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment ...Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.展开更多
The evolution of texture during the annealing and hot rolling process of extruded AZ31 magnesium alloy sheets was studied. There are two kinds of texture components in the extruded AZ31 sheets. One is {0002}<1010&g...The evolution of texture during the annealing and hot rolling process of extruded AZ31 magnesium alloy sheets was studied. There are two kinds of texture components in the extruded AZ31 sheets. One is {0002}<1010> and the other is {1010}<1120>. The {0002}<1010>component predominates. After annealing at 723 K for 3 h, both {0002}<1010> and {1010}<1120> components are strengthened moderately. This indicates that grains with both two components mentioned above grow faster than those with other orientations. The {1010}<1120> component disappears and the intensity of {0002}<1010> component decreases significantly after hot rolling with a 30% reduction at 623 K. This is mainly attributed to rotational dynamic recrystallization (RDX) during the hot rolling.展开更多
Microstructures, tensile properties, fracture characteristics of commercial AZ31 magnesium alloy thin sheet were studied by optical microscopy, scanning electron microscopy and uniaxial tensile test. Tensile tests wer...Microstructures, tensile properties, fracture characteristics of commercial AZ31 magnesium alloy thin sheet were studied by optical microscopy, scanning electron microscopy and uniaxial tensile test. Tensile tests were carried out at room temperature and 473K, with strain rates of 8.3×10 -44.2×10 -3s -1. The results show that grain refinement effects are better at high temperature, and it increases with the decrease of strain rate at 473K. Compared with that tested at room temperature, no apparent uniform plastic deformation stage exists in the stress—strain curves tested at 473K; afterwards, the stress—strain curve presents wavelike downward under condition of the small strain rate. Yield strength and tensile strength of the alloy decrease drastically while the elongation increases greatly. With the increase of strain rate, yield strength and tensile strength of the alloy increase, but the elongation decreases. The fracture of the alloy tested at room temperature is quasi-cleavage failure and ductile failure at 473K.展开更多
Two rolling ways,unidirectional rolling and cross rolling,were carried out on twin roll cast AZ31 alloy sheet to study the influence of strain path change on the evolution of the rolling microstructure and texture as ...Two rolling ways,unidirectional rolling and cross rolling,were carried out on twin roll cast AZ31 alloy sheet to study the influence of strain path change on the evolution of the rolling microstructure and texture as well as the anisotropic properties of AZ31 alloy sheet with microscopy,X-ray diffraction technique and tensile tests.It is found that cross rolling gives rise to more uniform microstructure and stronger texture intensities compared with unidirectional rolling.The differences in the microstructure and texture intensities are reflected in the anisotropy characterized by the difference in the yield stress and the fracture elongation that were measured along directions in the rolling plane at angles of 0■,45■and 90■from the rolling direction.展开更多
The annealed microstructures of the rolled AZ31 alloy sheets were examined by using light optical microscopy. The mechanical properties were measured by tensile testing, with their crystal orientations analyzed by X-r...The annealed microstructures of the rolled AZ31 alloy sheets were examined by using light optical microscopy. The mechanical properties were measured by tensile testing, with their crystal orientations analyzed by X-ray diffraction (XRD). After the annealing treatment, the elongated grains were transformed to equiaxed grains with uniform and homogeneous structures. The changes of microstructure decreased the yield strength and enhanced the elongation. The analysis of XRD shows that the AZ31 alloy sheet possesses intense basal-texture, which is weakened during the recrystallization while reinforced during the grain growth. The intense basal-texture induces low ductility, which hence makes the further rolling more difficult. The results indicate that the optimum annealing treatment during AZ31 alloys sheet rolling is at about 300℃for 60-120 min.展开更多
基金Project(50604020)supported by the National Natural Science Foundation of ChinaProject(2007CB613706)supported by the NationalBasic Research Program of ChinaProject(3581)supported by the Natural Science Foundation project of CQ CSTC,China
文摘The AZ31 sheets were prepared by extrusion.The effects of the extrusion processing parameters including the temperature extrusion ratio,and structure of the extrusion die on the microstructure and mechanical properties of the as-extruded AZ31 sheets were investigated.The results show that the partial grains grow abnormally.and the mechanical and anisotropic properties of the as-extruded AZ31 sheets have little change at the extrusion temperatures of 380-400℃and the extrusion ratio of 13.3.With the increase of the extrusion ratio,the microstructure of the as-extruded AZ31 sheets by conventional die becomes finer and more uniform,and the elongation rate increases,but the strength decreases and its anisotropy becomes worse.Under the porthole die,finer and more uniform microstructure,higher mechanical properties and better anisotropy can be brought for the as-extruded AZ31 sheets The extruded AZ31 sheets by the porthole die have better anneal process of 300℃and 1 h.
文摘There have been reports on sheet forming of Mg alloy in industry via the punch and die method; this paper is probably the first formal one for studying the sheet formability of AZ31 employing pressurized gas to press the sheet into a female die cavity at various elevated temperatures. The results indicate it is feasible to form a rectangular box via pressurized gas from extruded sheets of 0.5 and 1.7 mm thick. The formed box has 1:2 depth over width ratio, which should be large enough when dealing with realistic industrial sheet forming parts. Presently, forming a sheet of 0.5 mm thick is considered a technical challenge by industry, and it is conquered as demonstrated in this paper. Gas forming technique applied to Mg alloy is unprecedented and shows potential for industrial utilization.
基金partly supported by the National Natural Science Foundation of China (Nos. 52174362, 51975207)the Xiangtan Special Project for Building a National Innovative City,China (No. CG-YB20221043)the Yancheng “Talent Plan of Yellow Sea Pearl” for Leading Talent Project,China。
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.
基金Projects(50975174,51275297)supported by the National Natural Science Foundation of ChinaProject(20100073110044)supported by the Education Ministry of China
文摘The electroplastic effect in AZ31B magnesium alloy sheet was investigated through uniaxial tensile tests. In order to show the athermal effect of the electrical pulses, two types of uniaxial tensile tests at the same testing temperature were carried out: uniaxial tension in environmental cabinet and uniaxial tension with electrical pulses. In addition, the distribution of temperature field in the cross-section area during uniaxial tension with electrical pulses was simulated. The results show that the distribution of temperature field along the cross-section area is homogeneous. By comparing the true stress?true strain curves of AZ31B alloy under uniaxial tensile tests, the athermal effect with electrical pulses was confirmed. The microstructure evolution after the uniaxial tension was studied by optical microscopy. The results indicate that the electrical pulses induced dynamic recrystallization plays an important role in the decrease of flow stress. Finally, a flow stress model of AZ31B sheet taking the influence of electroplastic effect into account was proposed and validated. The results demonstrate that the calculated data fit the experimental data well.
基金Project(2007CB613705)supported by the National Key Technologies R&D Program of ChinaProject(2011DFA50902)supported by the International S&T Cooperation Program of China
文摘The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the stir zone of the FSSW AZ31 sheet joints, and all cracks initiate at the stir zone outer edge between the upper and lower sheet. When the cycle force equals 1 kN, the crack propagates along the interface of heat-affected zone and thermo-mechanical zone, simultaneously across the direction of force; while the cycle force equals 3 kN, the crack propagates along the diameter of stir zone and shear failure occurs finally. Moreover, the transverse microsections indicate that there is a tongue-like region at the outer edge of stir zone between the two AZ31 sheets, and the direction of tongue-like region is toward outside of the stirred zone and all fatigue cracks initiate at the tongue-like region.
基金financially supported by the National Key R&D Program of China(No.2016YFB0301105)。
文摘A novel method of pulsed magnetic field(PMF)treatment was developed to eliminate the residual stress of rolled magnesium alloy AZ31 sheet in this study.The eff ect of PMF on residual stress of rolled AZ31 sheet was investigated and its mechanism was analyzed.The experimental results revealed that the pulse frequency had a significant impact on residual stress.After 10.0 Hz PMF treatment,the average and maximum reduction rates of residual stress along the rolled direction were 26.6%and 30.3%,respectively.It was found that the dislocation density and parallel dislocation in grains of the rolled sheet increased after it was treated by the pulsed magnetic field.The simulation results showed that the Lorentz force generated by the pulsed magnetic field can lead to basal slip,thereby resulting in local plastic deformation.Besides,the Joule heat produced during the PMF treatment was conducive to the elimination of residual stress.
文摘Equal channel angular pressing (ECAP) processing and annealing were applied to the AZ31 magnesium alloy sheets to evaluate the potential improvement in the mechanical properties and formability. The ECAP experiment was conducted at 300 ℃ in a die having an included angle of 90o between two channels by the BCZ route with the sheets rotated by 90°about the normal axis of plate plane. The tensile tests and conical cup tests were conducted at various temperatures from 20 to 250 ℃. The experimental results indicated that improving the working temperatures could lead to the soft in the material and the enhancement of ductility. Comparatively, the ECAPed AZ31 alloy sheets showed the lower yield strength and smaller conical cup value (CCV) than the unECAPed counterpart in the room temperature. The difference in yield strength between them became small in the elevated temperature, but the ECAPed samples still had the smaller CCV value, implying the improved formability. The texture of the AZ31 alloy sheets could be modified by ECAP and the decrease in the yield strength and more uniform deformation realized in the material, so the formability of AZ31 alloy sheets was improved.
基金Project(2006 BAE04B02-3) supported by the National Scientific and Technological Support Program during the 11th Five-year Plan of China
文摘The evolution of texture during the annealing and hot rolling process of extruded AZ31 magnesium alloy sheets was studied. There are two kinds of texture components in the extruded AZ31 sheets. One is {0002}<1010> and the other is {1010}<1120>. The {0002}<1010>component predominates. After annealing at 723 K for 3 h, both {0002}<1010> and {1010}<1120> components are strengthened moderately. This indicates that grains with both two components mentioned above grow faster than those with other orientations. The {1010}<1120> component disappears and the intensity of {0002}<1010> component decreases significantly after hot rolling with a 30% reduction at 623 K. This is mainly attributed to rotational dynamic recrystallization (RDX) during the hot rolling.
文摘Microstructures, tensile properties, fracture characteristics of commercial AZ31 magnesium alloy thin sheet were studied by optical microscopy, scanning electron microscopy and uniaxial tensile test. Tensile tests were carried out at room temperature and 473K, with strain rates of 8.3×10 -44.2×10 -3s -1. The results show that grain refinement effects are better at high temperature, and it increases with the decrease of strain rate at 473K. Compared with that tested at room temperature, no apparent uniform plastic deformation stage exists in the stress—strain curves tested at 473K; afterwards, the stress—strain curve presents wavelike downward under condition of the small strain rate. Yield strength and tensile strength of the alloy decrease drastically while the elongation increases greatly. With the increase of strain rate, yield strength and tensile strength of the alloy increase, but the elongation decreases. The fracture of the alloy tested at room temperature is quasi-cleavage failure and ductile failure at 473K.
基金Project(2007CB613703)supported by the National Basic Research Program of China
文摘Two rolling ways,unidirectional rolling and cross rolling,were carried out on twin roll cast AZ31 alloy sheet to study the influence of strain path change on the evolution of the rolling microstructure and texture as well as the anisotropic properties of AZ31 alloy sheet with microscopy,X-ray diffraction technique and tensile tests.It is found that cross rolling gives rise to more uniform microstructure and stronger texture intensities compared with unidirectional rolling.The differences in the microstructure and texture intensities are reflected in the anisotropy characterized by the difference in the yield stress and the fracture elongation that were measured along directions in the rolling plane at angles of 0■,45■and 90■from the rolling direction.
基金Project(2002AADF3306) supported by the International Cooperation and Exchanges NSFC of China
文摘The annealed microstructures of the rolled AZ31 alloy sheets were examined by using light optical microscopy. The mechanical properties were measured by tensile testing, with their crystal orientations analyzed by X-ray diffraction (XRD). After the annealing treatment, the elongated grains were transformed to equiaxed grains with uniform and homogeneous structures. The changes of microstructure decreased the yield strength and enhanced the elongation. The analysis of XRD shows that the AZ31 alloy sheet possesses intense basal-texture, which is weakened during the recrystallization while reinforced during the grain growth. The intense basal-texture induces low ductility, which hence makes the further rolling more difficult. The results indicate that the optimum annealing treatment during AZ31 alloys sheet rolling is at about 300℃for 60-120 min.