Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at...The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.展开更多
In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic...In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic steatohepatitis(NASH).The authors found that MXS treatment mitigated hepatic steatosis and inflam-mation in the NASH model,as evidenced by the reduction in lipid droplets(LDs),fibrosis markers and lipogenic factors.Interestingly,these hepatoprotective effects were associated with androgen upregulation(based on metabolomics analysis of male steroid hormone metabolites),adenosine 5’-monophosphate-activated protein kinase(AMPK)activation,and restoration of phosphatase and tensin homolog(PTEN)expression.However,the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model,and androgen upregulation,AMPK activation,and restoration of PTEN expression.This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model.As a perspective,we propose additional mechanisms(such as autophagy/lipophagy activation in hepatocytes)for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model.A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.展开更多
There is a consensus that both type 1 and type 2 diabetes are associated with a spectrum of cancers but the underlying mechanisms are largely unknown.On the other hand,there are ongoing debates about the risk associat...There is a consensus that both type 1 and type 2 diabetes are associated with a spectrum of cancers but the underlying mechanisms are largely unknown.On the other hand,there are ongoing debates about the risk association of insulin use with cancer.We have briefly reviewed recent related research on exploration of risk factors for cancer and pharmacoepidemiological investigations into drug use in diabetes on the risk of cancer,as well as the current understanding of metabolic pathways implicated in intermediary metabolism and cellular growth.Based on the novel findings from the Hong Kong Diabetes Registry and consistent experimental evidence,we argue that use of insulin to control hyperglycemia is unlikely to contribute to increased cancer risk and that dysregulations in the AMPactivated protein kinase pathway due to reduced insulin action and insulin resistance,the insulin-like growth factor-1(IGF-1)-cholesterol synthesis pathway and renin-angiotensin system,presumably due to reduced insulin secretion and hyperglycemia,may play causal roles in the increased risk of cancer in diabetes.Further exploration into the possible causal relationships between abnormalities of these pathways and the risk of cancer in diabetes is warranted.展开更多
AIM To investigate the mechanisms by which Sheng-jiang powder(SJP) ameliorates obesity-induced pancreatic inflammatory injury.METHODS Sprague-Dawley rats were randomized into three groups: normal group(NG), obese grou...AIM To investigate the mechanisms by which Sheng-jiang powder(SJP) ameliorates obesity-induced pancreatic inflammatory injury.METHODS Sprague-Dawley rats were randomized into three groups: normal group(NG), obese group(HLG), or SJP treatment group(HSG). Obesity was induced by feeding a high-fat diet in the HLG and HSG, while the NG received standard chow. Rats were euthanized after 12 wk, and blood and pancreatic tissues were collected for histopathological analyses. Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB) and transforming growth factor beta(TGF-β) expression, serum triglyceride and adiponectin levels, and apoptosis in pancreatic acinar cells were assessed. A high-fat AR42 J acinar cell injury model was established using very low-density lipoprotein(VLDL). AR42 J acinar cell culture supernatant, treated with different interventions, was applied to seven groups of pancreatic stellate cells(PSCs). The proliferation of PSCs and the expression of fibronectin and type I collagenase were assessed.RESULTS Compared with the NG, we found higher pathological scores for pancreatic tissues, lower serum adiponectin levels, higher expression levels of NF-κB in pancreatic tissues and TGF-β in pancreatic inflammatory cells, and increased apoptosis among pancreatic acinar cells for the HLG(P < 0.05). Compared with the HLG, we found reduced body weight, Lee's index scores, serum triglyceride levels, and pathological scores for pancreatic tissues; higher serum adiponectin levels; and lower expression levels of NF-κB, in pancreatic tissue and TGF-β in pancreatic inflammatory cells for the HSG(P < 0.05). The in vitro studies showed enhanced PSC activation and increased expression levels of fibronectin and type I collagenase after SJP treatment. An adenosine 5‘-monophosphate-activated protein kinase(AMPK) inhibitor inhibited PSC activation.CONCLUSION SJP may ameliorate obesity-induced pancreatic inflammatory injury in rats by regulating key molecules of the adiponectin-AMPK signalling pathway.展开更多
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
基金Supported by the National Institutes of Health Grants,No.K99HL146954 and No.R00HL146954the College of Pharmacy Seed Research Grant Program of the University of Tennessee Health Science Center.
文摘The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.
文摘In this letter,we comment on a recent publication by Mei et al,in the World Journal of Hepatology,investigating the hepatoprotective effects of the modified Xiaoyao San(MXS)formula in a male rat model of non-alcoholic steatohepatitis(NASH).The authors found that MXS treatment mitigated hepatic steatosis and inflam-mation in the NASH model,as evidenced by the reduction in lipid droplets(LDs),fibrosis markers and lipogenic factors.Interestingly,these hepatoprotective effects were associated with androgen upregulation(based on metabolomics analysis of male steroid hormone metabolites),adenosine 5’-monophosphate-activated protein kinase(AMPK)activation,and restoration of phosphatase and tensin homolog(PTEN)expression.However,the authors did not clearly discuss the relationships between MXS-induced hepatic steatosis reduction in the NASH model,and androgen upregulation,AMPK activation,and restoration of PTEN expression.This editorial emphasizes the reported mechanisms and explains how they act or interact with each other to reduce hepatic steatosis and inflammation in the NASH model.As a perspective,we propose additional mechanisms(such as autophagy/lipophagy activation in hepatocytes)for the clearance of LDs and suppression of hepatic steatosis by MXS in the NASH model.A proper understanding of the mechanisms of MXS-induced reduction of hepatic steatosis might help in the treatment of NASH and related diseases.
基金Supported by The Hong Kong Foundation for Research and Development in Diabetes,Lioa Wun Yuk Diabetes Memorial Fund,established under the auspices of the Chinese University of Hong Kong
文摘There is a consensus that both type 1 and type 2 diabetes are associated with a spectrum of cancers but the underlying mechanisms are largely unknown.On the other hand,there are ongoing debates about the risk association of insulin use with cancer.We have briefly reviewed recent related research on exploration of risk factors for cancer and pharmacoepidemiological investigations into drug use in diabetes on the risk of cancer,as well as the current understanding of metabolic pathways implicated in intermediary metabolism and cellular growth.Based on the novel findings from the Hong Kong Diabetes Registry and consistent experimental evidence,we argue that use of insulin to control hyperglycemia is unlikely to contribute to increased cancer risk and that dysregulations in the AMPactivated protein kinase pathway due to reduced insulin action and insulin resistance,the insulin-like growth factor-1(IGF-1)-cholesterol synthesis pathway and renin-angiotensin system,presumably due to reduced insulin secretion and hyperglycemia,may play causal roles in the increased risk of cancer in diabetes.Further exploration into the possible causal relationships between abnormalities of these pathways and the risk of cancer in diabetes is warranted.
基金Supported by the National Natural Science Foundation of China,No.81603519 and No.81573857
文摘AIM To investigate the mechanisms by which Sheng-jiang powder(SJP) ameliorates obesity-induced pancreatic inflammatory injury.METHODS Sprague-Dawley rats were randomized into three groups: normal group(NG), obese group(HLG), or SJP treatment group(HSG). Obesity was induced by feeding a high-fat diet in the HLG and HSG, while the NG received standard chow. Rats were euthanized after 12 wk, and blood and pancreatic tissues were collected for histopathological analyses. Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB) and transforming growth factor beta(TGF-β) expression, serum triglyceride and adiponectin levels, and apoptosis in pancreatic acinar cells were assessed. A high-fat AR42 J acinar cell injury model was established using very low-density lipoprotein(VLDL). AR42 J acinar cell culture supernatant, treated with different interventions, was applied to seven groups of pancreatic stellate cells(PSCs). The proliferation of PSCs and the expression of fibronectin and type I collagenase were assessed.RESULTS Compared with the NG, we found higher pathological scores for pancreatic tissues, lower serum adiponectin levels, higher expression levels of NF-κB in pancreatic tissues and TGF-β in pancreatic inflammatory cells, and increased apoptosis among pancreatic acinar cells for the HLG(P < 0.05). Compared with the HLG, we found reduced body weight, Lee's index scores, serum triglyceride levels, and pathological scores for pancreatic tissues; higher serum adiponectin levels; and lower expression levels of NF-κB, in pancreatic tissue and TGF-β in pancreatic inflammatory cells for the HSG(P < 0.05). The in vitro studies showed enhanced PSC activation and increased expression levels of fibronectin and type I collagenase after SJP treatment. An adenosine 5‘-monophosphate-activated protein kinase(AMPK) inhibitor inhibited PSC activation.CONCLUSION SJP may ameliorate obesity-induced pancreatic inflammatory injury in rats by regulating key molecules of the adiponectin-AMPK signalling pathway.