A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculat...A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.展开更多
The title compound was synthesized and its crystal structure was determined. C_(13)H(21)NO_2·HCl, orthorhombic, space group P2_12_12_1 with dimensions:a =10. 635(2), b=26.942(6), c=6.193(2), V=1774.5(8),Z=4,Mr=31...The title compound was synthesized and its crystal structure was determined. C_(13)H(21)NO_2·HCl, orthorhombic, space group P2_12_12_1 with dimensions:a =10. 635(2), b=26.942(6), c=6.193(2), V=1774.5(8),Z=4,Mr=319. 83 and Dc=1.20g/cm ̄3. The final residual factor R=0.048, Rw=0.062. The C atoms except those in rings has a distorted tetrahedron structure.The dihedral angle between the phenyl rings in the molecule is 74. 56°. There is no bond between HCl and ester.The molecules join each other by van der Waals force. Its molecular orbital calculations were carried out by means of extended Huckel molecular orbital method.展开更多
Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as li...Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as ligand have been synthesized, characterized by different techniques and their antibacterial activities were studied. Molecular modeling calculations were performed using DMOL<sup>3</sup> program in materials studio package which is designed for the realization of large scale density functional theory calculation (DFT). The quantum mechanical and chemical reactivity parameters such as chemical hardness, chemical potential, electronegativity, electrophilicity index and Homo-Lumo energy gap were obtained theoretically and were used to understand the biological activity of the prepared compounds. Some complexes were tested for their in-vitro cytotoxic activity in human lung cancer cell lines (A-549 cell line), and structureactivity relationships were established. In general, the coordination to Co<sup>2+</sup> increased the cytotoxicity while the Ni<sup>2+</sup> complexes show reduced cytotoxic activity compared to the metal-free 3-aminopyridine.展开更多
Comparing to orthogonal localized molecular orbitals (OLMO), the nonorthogonal localized molecular orbitals (NOLMO) exhibit bonding pictures more accordant with those in the traditional chemistry. They are more contra...Comparing to orthogonal localized molecular orbitals (OLMO), the nonorthogonal localized molecular orbitals (NOLMO) exhibit bonding pictures more accordant with those in the traditional chemistry. They are more contracted, so that they have a better transferability and better performances for the calculation of election correlation energies and for the linear scaling algorithms of large systems. The satisfactory NOLMOs should be as contracted as possible while their shapes and spatial distribution keep in accordance with the traditional chemical bonding picture. It is found that the spread of NOLMOs is a monotonic decreasing function of their orthogonality, and it may reduce to any extent as the orthogonality descends. However, when the orthogonality descends to some point, the shapes and spatial distribution of the NOLMOs deviate drastically from the traditional chemical bonding picture, and finally the NOLMOs tend to linear dependence. Without the requirement of orthogonalization, some other constraints have to be imposed for constructing satisfactory NOLMOs by minimizing their spread functional. It is shown that satisfactory results can be generated by coupling the minimization of orbital spread functionals with the maximization of the distances between orbital centroids.展开更多
High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and ...High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Huckel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.展开更多
The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organ...The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.展开更多
文摘A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.
文摘The title compound was synthesized and its crystal structure was determined. C_(13)H(21)NO_2·HCl, orthorhombic, space group P2_12_12_1 with dimensions:a =10. 635(2), b=26.942(6), c=6.193(2), V=1774.5(8),Z=4,Mr=319. 83 and Dc=1.20g/cm ̄3. The final residual factor R=0.048, Rw=0.062. The C atoms except those in rings has a distorted tetrahedron structure.The dihedral angle between the phenyl rings in the molecule is 74. 56°. There is no bond between HCl and ester.The molecules join each other by van der Waals force. Its molecular orbital calculations were carried out by means of extended Huckel molecular orbital method.
文摘Seven transition metal complexes of Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup> with 3-aminopyridine (3-APy) as ligand have been synthesized, characterized by different techniques and their antibacterial activities were studied. Molecular modeling calculations were performed using DMOL<sup>3</sup> program in materials studio package which is designed for the realization of large scale density functional theory calculation (DFT). The quantum mechanical and chemical reactivity parameters such as chemical hardness, chemical potential, electronegativity, electrophilicity index and Homo-Lumo energy gap were obtained theoretically and were used to understand the biological activity of the prepared compounds. Some complexes were tested for their in-vitro cytotoxic activity in human lung cancer cell lines (A-549 cell line), and structureactivity relationships were established. In general, the coordination to Co<sup>2+</sup> increased the cytotoxicity while the Ni<sup>2+</sup> complexes show reduced cytotoxic activity compared to the metal-free 3-aminopyridine.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.29928002,20333020).
文摘Comparing to orthogonal localized molecular orbitals (OLMO), the nonorthogonal localized molecular orbitals (NOLMO) exhibit bonding pictures more accordant with those in the traditional chemistry. They are more contracted, so that they have a better transferability and better performances for the calculation of election correlation energies and for the linear scaling algorithms of large systems. The satisfactory NOLMOs should be as contracted as possible while their shapes and spatial distribution keep in accordance with the traditional chemical bonding picture. It is found that the spread of NOLMOs is a monotonic decreasing function of their orthogonality, and it may reduce to any extent as the orthogonality descends. However, when the orthogonality descends to some point, the shapes and spatial distribution of the NOLMOs deviate drastically from the traditional chemical bonding picture, and finally the NOLMOs tend to linear dependence. Without the requirement of orthogonalization, some other constraints have to be imposed for constructing satisfactory NOLMOs by minimizing their spread functional. It is shown that satisfactory results can be generated by coupling the minimization of orbital spread functionals with the maximization of the distances between orbital centroids.
基金This project is supported by the Natural Science Foundation of China (NSFC), the Chinese National "973" project of the Ministry of Science and Technology (MOST), the Chinese Academy of Sciences and the Shanghai Supercomputer Center, H. T. acknowledges the "Centre de Calcul en Midi-Pyrenees" (CALMIP) for computational resources. H. T. also thanks Sebastien Gauthier for useful discussions.
文摘High-resolution scanning tunneling microscope images of iron phthalocyanine and zinc phthalocyanine molecules on Au(111) have been obtained using a functionalized tip of a scanning tunneling microscope (STM), and show rich intramolecular features that are not observed using clean tips. Ab initio density functional theory calculations and extended Huckel theory calculations revealed that the imaging of detailed electronic states is due specifically to the decoration of the STM tip with O2. The detailed structures are differentiated only when interacting with the highly directional orbitals of the oxygen molecules adsorbed on a truncated, [111]-oriented tungsten tip. Our results indicate a method for increasing the resolution in generic scans and thus, have potential applications in fundamental research based on high-resolution electronic states of molecules on metals, concerning, for example, chemical reactions, and catalysis mechanisms.
基金supported by the Taishan Scholars Project of Shandong Province(no.ts201712011)the National Natural Science Foundation of China(NSFC)(nos.21603119 and 21705093)+4 种基金the Natural Science Foundation of Shandong Province(nos.ZR2017BB061 and ZR2016BQ09)the Natural Science Foundation of Jiangsu Province(no.BK20170396)the Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(no.2019KJC025)the Young Scholars Program of Shandong University(YSPSDU)(no.2018WLJH48)the Qilu Youth Scholar Funding of Shandong University,and the Fundamental Research Funds of Shandong University(no.2017TB003).
文摘The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.