针对数字通信信号的信噪比盲估计问题,提出了一种基于子空间理论的盲信噪比估计方法。该方法首先根据信号自相关序列构建特定维数的信号自相关矩阵,并根据实际工程应用需求,利用坐标旋转数字计算(Coordinate rotation digital computer,...针对数字通信信号的信噪比盲估计问题,提出了一种基于子空间理论的盲信噪比估计方法。该方法首先根据信号自相关序列构建特定维数的信号自相关矩阵,并根据实际工程应用需求,利用坐标旋转数字计算(Coordinate rotation digital computer,CORDIC)算法实现Jacobi旋转来完成自相关矩阵的特征值分解,避免了实际实现时对硬件乘法器的调用。并以6种常用的数字通信信号为例,在加性高斯白噪声(AWGN)信道条件下,实际信噪比在-10~30dB范围内时对其信噪比估计性能进行仿真分析。仿真表明,当实际信噪比为-5~22dB时,信噪比估计标准偏差小于0.5dB,且提出的信噪比估计器具有渐近无偏特性,证明了该方法是一种进行盲信噪比估计的有效方法。展开更多
Based on the nonlinearization of Lax pairs, the Korteweg-de Vries (KdV) soliton hierarchy is decomposed into a family of finite-dimensional Hamiltonian systems, whose Liouville integrability is proved by means of th...Based on the nonlinearization of Lax pairs, the Korteweg-de Vries (KdV) soliton hierarchy is decomposed into a family of finite-dimensional Hamiltonian systems, whose Liouville integrability is proved by means of the elliptic coordinates. By applying the Abel-Jacobi coordinates on a Riemann surface of hyperelliptic curve, the resulting Hamiltonian flows as well as the KdV soliton hierarchy are ultimately reduced into linear superpositions, expressed by the Abel-Jacobi variables.展开更多
文摘针对数字通信信号的信噪比盲估计问题,提出了一种基于子空间理论的盲信噪比估计方法。该方法首先根据信号自相关序列构建特定维数的信号自相关矩阵,并根据实际工程应用需求,利用坐标旋转数字计算(Coordinate rotation digital computer,CORDIC)算法实现Jacobi旋转来完成自相关矩阵的特征值分解,避免了实际实现时对硬件乘法器的调用。并以6种常用的数字通信信号为例,在加性高斯白噪声(AWGN)信道条件下,实际信噪比在-10~30dB范围内时对其信噪比估计性能进行仿真分析。仿真表明,当实际信噪比为-5~22dB时,信噪比估计标准偏差小于0.5dB,且提出的信噪比估计器具有渐近无偏特性,证明了该方法是一种进行盲信噪比估计的有效方法。
基金The project supported by National Natural Science Foundation of China under Grant No. 10471132 and the Special Foundation for.the State Key Basic Research Project "Nonlinear Science"
文摘Based on the nonlinearization of Lax pairs, the Korteweg-de Vries (KdV) soliton hierarchy is decomposed into a family of finite-dimensional Hamiltonian systems, whose Liouville integrability is proved by means of the elliptic coordinates. By applying the Abel-Jacobi coordinates on a Riemann surface of hyperelliptic curve, the resulting Hamiltonian flows as well as the KdV soliton hierarchy are ultimately reduced into linear superpositions, expressed by the Abel-Jacobi variables.