Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every id...Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N J(R) of R, that H has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.展开更多
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that...We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.展开更多
Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar ...Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar to a diagonal matrix. (b). If R is an APT (abelian projectively trivial) ring, then A can be uniquely diagonalized as diag{el, ..., en} and ei divides ei+1. (c). R is an APT ring if and only if R/I is an APT ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular ring is an APT ring.展开更多
A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-reg...A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-regular rings. We prove various properties of π-*-regular rings, and establish many equivalent characterizations of abelian π-*-regular rings.展开更多
This article concerns a ring property called pseudo-reduced-over-center that is satisfied by free algebras over commutative reduced rings.The properties of radicals of pseudo-reduced-over-center rings are investigated...This article concerns a ring property called pseudo-reduced-over-center that is satisfied by free algebras over commutative reduced rings.The properties of radicals of pseudo-reduced-over-center rings are investigated,especially related to polynomial rings.It is proved that for pseudo-reduced-over-center rings of nonzero characteristic,the centers and the pseudo-reduced-over-center property are preserved through factor rings modulo nil ideals.For a locally finite ring R,it is proved that if R is pseudo-reduced-over-center,then R is commutative and R/J(R)is a commutative regular ring with J(R)nil,where J(R)is the Jacobson radical of R.展开更多
文摘Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N J(R) of R, that H has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.
基金Partially supported by the NSF (10071035) of China.
文摘We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.
文摘Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar to a diagonal matrix. (b). If R is an APT (abelian projectively trivial) ring, then A can be uniquely diagonalized as diag{el, ..., en} and ei divides ei+1. (c). R is an APT ring if and only if R/I is an APT ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular ring is an APT ring.
基金The authors are highly grateful to the referee for many valuable comments. This research was supported by the National Natural Science Foundation of China (No. 11401009), Anhui Provincial Natural Science Foundation (No. 1408085QA01) and Key Natural Science Foundation of Anhui Educational Committee (No. KJ2014A082).
文摘A ring R is π-regular if for every a in R, there is a positive integer n such that a^n R is generated by an idempotent. In this paper, we introduce the notion of π-*-regular rings, which is the *-version of π-regular rings. We prove various properties of π-*-regular rings, and establish many equivalent characterizations of abelian π-*-regular rings.
基金The second author was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2019R1F1A1040405).
文摘This article concerns a ring property called pseudo-reduced-over-center that is satisfied by free algebras over commutative reduced rings.The properties of radicals of pseudo-reduced-over-center rings are investigated,especially related to polynomial rings.It is proved that for pseudo-reduced-over-center rings of nonzero characteristic,the centers and the pseudo-reduced-over-center property are preserved through factor rings modulo nil ideals.For a locally finite ring R,it is proved that if R is pseudo-reduced-over-center,then R is commutative and R/J(R)is a commutative regular ring with J(R)nil,where J(R)is the Jacobson radical of R.