Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing t...Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing the physiological triggers and consequences in postharvest balsam fir, there have been no studies describing morphological or ultrastructural changes. Therefore, the objective of this study was to examine changes in stomata and chloroplast of postharvest needles. Branches were collected from low and high needle abscission resistance balsam fir genotypes, placed in water, and displayed in typical household conditions for 11 weeks. Needle abscission, chlorophyll fluorescence, and water uptake were monitored throughout. Needles stomata and chloroplasts were examined under a scanning and transmission electron microscope, respectively, each week. All branches had increased abscission, decreased chlorophyll fluorescence, and decreased water uptake over time. Needle surfaces accumulated fungal hyphae, especially in stomata. Chloroplasts demonstrated some dysfunction within two weeks, with notable decreases in chloroplast starch and increases in plastoglobulins. Within several weeks thylakoid membranes had been dismantled as chloroplasts transformed into gerontoplasts. All biophysical and structural changes were more pronounced in low needle abscission resistant genotypes. This research identifies a potential role for needle fungi in postharvest needle abscission and confirms the postharvest senescence of chloroplasts. Though it was previously speculated that chloroplasts must senesce postharvest, this study identifies how quickly this process occurs and that it occurs at different rates in contrasting genotypes.展开更多
Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes...Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.展开更多
This paper reports the physico-chemical characteristics of the products derived from the thermolysis (thermolytic distillation) of waste silver fir (Abies alba Mill.) wood at different temperatures (400℃- 600℃) in a...This paper reports the physico-chemical characteristics of the products derived from the thermolysis (thermolytic distillation) of waste silver fir (Abies alba Mill.) wood at different temperatures (400℃- 600℃) in a pilot scale plant. Depending on the thermolysis temperature, the procedure yielded 45 - 53 wt% pyroligneous acid with a high water content (80 - 86 wt%) and pH ≈ 3.6. The process also produced a carbonaceous solid or biochar (23 - 26 wt%), its properties strongly dependent on the thermolysis temperature. Gases (20 - 31 wt%) were also produced;these were transformed into electrical energy via a gas turbine. The pyroligneous acid was centrifuged to isolate a subfraction composed mostly of phenols (phenol, mequinol and furfural) with a total C content of 68 - 74 wt%. The remainder was subjected to fractionated distillation at laboratory scale, and the distillate subjected to liquid-liquid extraction using diethyl ether in two stages to obtain a bio-oil composed mainly of acetic acid (≈47%), aldehydes, ketones and alcohols (≈31%), phe- nols (≈18%) and aliphatic alcohols. The characteristics of the bio-oil depended on the thermolysis temperature.展开更多
目的探讨ABI家族成员3结合蛋白(ABI family member 3-binding protein,ABI3BP)在血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导内皮祖细胞功能障碍中的作用及机制。方法为探讨ABI3BP在AngⅡ诱导内皮祖细胞功能障碍中的作用,将细胞分为4组,sh-N...目的探讨ABI家族成员3结合蛋白(ABI family member 3-binding protein,ABI3BP)在血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导内皮祖细胞功能障碍中的作用及机制。方法为探讨ABI3BP在AngⅡ诱导内皮祖细胞功能障碍中的作用,将细胞分为4组,sh-NC组[转染阴性对照短发夹RNA(LV-scramble-shRNA)+磷酸盐缓冲液(phosphate buffered saline,PBS)]、sh-ABI3BP组[转染ABI3BP shRNA(LV-ABI3BP-shRNA)+PBS]、sh-NC+AngⅡ组(LV-scramble-shRNA+AngⅡ)和sh-ABI3BP+AngⅡ组(LV-ABI3BP-shRNA+AngⅡ)。采用Transwell实验检测细胞迁移能力,黏附实验检测细胞黏附能力,Matrigel检测细胞成管能力,原位末端标记法检测细胞凋亡。Western blot检测整合素β1-黏着斑激酶(focal adhesion kinase,FAK)-P53信号通路变化情况。结果与sh-NC组比较,sh-NC+AngⅡ组迁移细胞数量、黏附细胞数量、小管形成数量显著降低,细胞凋亡率、整合素β1、磷酸化FAK(p-FAK)/FAK及P53蛋白表达显著增高,差异有统计学意义(P<0.05)。与sh-NC+AngⅡ组比较,sh-ABI3BP+AngⅡ组迁移细胞数量[(88.67±8.33)个vs(62.33±7.37)个]、黏附细胞数量[(104.33±6.03)个vs(68.33±10.05)个]、小管形成数量[(36.33±3.21)个vs(19.33±3.06)个]显著增高,细胞凋亡率、整合素β1、p-FAK/FAK及P53蛋白表达水平显著降低,差异有统计学意义(P<0.05)。结论AngⅡ可上调ABI3BP表达,敲低ABI3BP基因表达可改善AngⅡ诱导的内皮祖细胞功能障碍,其机制可能与抑制整合素β1-FAK-P53信号通路有关。展开更多
[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.W...[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.展开更多
Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid cha...Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid changes in the vegetation of the lower forest layers.We aimed to determine the response of non-tree understory vegetation to the mass dieback of Norway spruce(Picea abies)in the first years after the disturbance caused by the European spruce bark beetle(Ips typographus)outbreak.Our study area was the Białowieża Biosphere Reserve covering the Polish part of the emblematic Białowieża Forest,in total 597km^(2).The main data source comprised 3,900 phytosociological relevés(combined spring and summer campaigns)collected from 1,300 systematically distributed forest sites in 2016–2018–the peak years of the bark beetle outbreak.We found that the understory responded immediately to mass spruce dieback,with the most pronounced changes observed in the year of the disturbance and the subsequent year.Shade-tolerant forest species declined in the initial years following the mass spruce dieback,while hemicryptophytes,therophytes,light-demanding species associated with non-forest seminatural communities,as well as water-demanding forest species,expanded.Oxalis acetosella,the most common understory species in the Białowieża Forest,showed a distinct fluctuation pattern,with strong short-term expansion right after spruce dieback,followed by a gradual decline over the next 3–4 years to a cover level 5 percentage points lower than before the disturbance.Thus,our study revealed that mass spruce dieback selectively affects individual herb species,and their responses can be directional and non-directional(fluctuation).Furthermore,we demonstrated that the mass dieback of spruce temporarily increases plant species diversity(α-diversity).展开更多
Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of t...Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of toxic reactive oxygen species(ROS)to suppress seed germination.Controlled deterioration treatment(CDT)is a gen-eral approach for mimicking seed aging.The transcription factor ANAC089 was previously reported to modulate seed primary germination.In this study,we evaluated the ability of ANAC089 to control seed viability during aging.Compared with that in the wild-type line,the mutation of ANAC089 significantly increased H_(2)O_(2),thereby reducing seed viability after CDT,while the overexpression of ANAC089 reduced H_(2)O_(2) and improved seed long-evity,indicating a critical role for ANAC089 in maintaining seed viability through H_(2)O_(2) signaling.A series of stu-dies have shown that ANAC089 targets and negatively regulates the level of ABI5,an important transmitter of abscisic acid(ABA)signals,to affect seed viability after CDT.Furthermore,ABI5 negatively regulated the expres-sion of VTC2,which is involved in the biosynthesis of the antioxidant ascorbic acid and H_(2)O_(2) scavenging.As a result,ANAC089 attenuates the generation of H_(2)O_(2),thereby enhancing seed viability through the ABI5-VTC2 module during the seed aging process.Taken together,our results reveal a novel mechanism by which ANAC089 enhances seed viability by coordinating ABI5 and VTC2 expression,ultimately preventing the overac-cumulation of H_(2)O_(2),which would have led to reduced seed viability.展开更多
Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anth...Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anthropogenic sources. The aim of this study was to assess the levels of selenium in the sediments of the Aby Lagoon and its tributaries, the Tanoe River and the Tendo Lagoon, and to examine the spatial and seasonal variations of selenium concentrations. Sediment samples were collected from different sites and seasons, and selenium concentrations were measured by atomic fluorescence spectrometry. The results showed that the average concentration of selenium in the sediments of the Aby Lagoon was 0.82 mg/kg, indicating moderate contamination. The concentration of selenium varied between sites and seasons, with higher values in the channel of the Tendo Lagoon and during the dry season. The study highlighted the complexity of selenium dynamics in aquatic ecosystems, and the need to take into account seasonal and spatial variability as well as interactions between environmental factors. The study also suggested potential ecotoxicological risks for some sensitive organisms in certain areas of the lagoon. This study contributes to the knowledge of the dynamics of selenium in lagoon ecosystems and to the assessment of the environmental risks associated with its presence.展开更多
Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive ...Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes. A process-oriented biogeochemical model, Forest-DNDC, was applied to simulate the effects of climatic factors, temperature and precipitation changes on carbon characteristics, and greenhouse gases (GHGs) emissions in A. fabric forest. Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy. The model simulated carbon fluxes, soil carbon dynamics, soil CO2, N2O, and NO emissions with the changes of temperature and precipitation conditions. The results showed that with variation in the baseline temperature from -2℃ to +2℃, the gross primary production (GPP) and soil organic carbon (SOC) increased, and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate. With increasing baseline precipitation the GPP and NPP increased slightly, and the NEP and SOC showed decreasing trend. Soil CO2 emissions increased with the increase of temperature, and CO2 emissions changed little with increased baseline precipitation. With increased temperature and decreased baseline temperature, the total annual soil N2O emissions increased. With the variation of baseline temperature from -2℃ to +2℃, the total annual soil NO emissions increased. The total annual N2O and NO emissions showed increasing trends with the increase of precipitation. The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes, soil carbon dynamics, and soil GHGs emissions. The precipitation was not a principal factor affecting carbon fluxes, soil carbon dynamics, and soil CO2 emissions, but changes in precipitation could exert strong effect on soil N2O and NO emissions.展开更多
文摘Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing the physiological triggers and consequences in postharvest balsam fir, there have been no studies describing morphological or ultrastructural changes. Therefore, the objective of this study was to examine changes in stomata and chloroplast of postharvest needles. Branches were collected from low and high needle abscission resistance balsam fir genotypes, placed in water, and displayed in typical household conditions for 11 weeks. Needle abscission, chlorophyll fluorescence, and water uptake were monitored throughout. Needles stomata and chloroplasts were examined under a scanning and transmission electron microscope, respectively, each week. All branches had increased abscission, decreased chlorophyll fluorescence, and decreased water uptake over time. Needle surfaces accumulated fungal hyphae, especially in stomata. Chloroplasts demonstrated some dysfunction within two weeks, with notable decreases in chloroplast starch and increases in plastoglobulins. Within several weeks thylakoid membranes had been dismantled as chloroplasts transformed into gerontoplasts. All biophysical and structural changes were more pronounced in low needle abscission resistant genotypes. This research identifies a potential role for needle fungi in postharvest needle abscission and confirms the postharvest senescence of chloroplasts. Though it was previously speculated that chloroplasts must senesce postharvest, this study identifies how quickly this process occurs and that it occurs at different rates in contrasting genotypes.
基金supported by the National Natural Science Foundation of China (Grant No. 41371009)the Fundamental Research Fund for the Central Universities of China (Grant No. lzujbky2013-127)
文摘Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.
文摘This paper reports the physico-chemical characteristics of the products derived from the thermolysis (thermolytic distillation) of waste silver fir (Abies alba Mill.) wood at different temperatures (400℃- 600℃) in a pilot scale plant. Depending on the thermolysis temperature, the procedure yielded 45 - 53 wt% pyroligneous acid with a high water content (80 - 86 wt%) and pH ≈ 3.6. The process also produced a carbonaceous solid or biochar (23 - 26 wt%), its properties strongly dependent on the thermolysis temperature. Gases (20 - 31 wt%) were also produced;these were transformed into electrical energy via a gas turbine. The pyroligneous acid was centrifuged to isolate a subfraction composed mostly of phenols (phenol, mequinol and furfural) with a total C content of 68 - 74 wt%. The remainder was subjected to fractionated distillation at laboratory scale, and the distillate subjected to liquid-liquid extraction using diethyl ether in two stages to obtain a bio-oil composed mainly of acetic acid (≈47%), aldehydes, ketones and alcohols (≈31%), phe- nols (≈18%) and aliphatic alcohols. The characteristics of the bio-oil depended on the thermolysis temperature.
基金Supported by Science and Technology Plan of Zhejiang Province(2005C32036)National Natural Science Foundation of China(30700644)~~
文摘[Objective] The experiment aimed to explore the influences of phytohormones (ABT and IAA) and nutrient solution on rooting of Abies beshanzuensis M.H.Wu by water cultured medium. [Method] The Abies beshanzuensis M.H.Wu were treated by water (CK), 10 mg/L ABT+ water, 10 mg/L IAA+ water, 10 mg/L ABT+ hoagland solution, 10 mg/L IAA+ hoagland solution, then the rooting process was observed and the formation rate of callus, rooting rate, number of rooting, and root length were investigated and analyzed. [Result] ABT and IAA had obvious influences on callus induction, rooting rate and the number of root of Abies beshanzuensis M.H.Wu by water culture, so they were suitable to be used in water propagation of Abies beshanzuensis M.H.Wu. The treatments of phytohormones had no regular influences on the longest root length and average root length. The nutrient solutions would not generate obvious influence on propagation of Abies beshanzuensis M.H.Wu at firstly stage, but they generated influence on root growth after rooting. [Conclusion] The research provided new ideas for propagation of Abies beshanzuensis M.H.Wu, which could make it out of endangerment situation quickly.
文摘Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid changes in the vegetation of the lower forest layers.We aimed to determine the response of non-tree understory vegetation to the mass dieback of Norway spruce(Picea abies)in the first years after the disturbance caused by the European spruce bark beetle(Ips typographus)outbreak.Our study area was the Białowieża Biosphere Reserve covering the Polish part of the emblematic Białowieża Forest,in total 597km^(2).The main data source comprised 3,900 phytosociological relevés(combined spring and summer campaigns)collected from 1,300 systematically distributed forest sites in 2016–2018–the peak years of the bark beetle outbreak.We found that the understory responded immediately to mass spruce dieback,with the most pronounced changes observed in the year of the disturbance and the subsequent year.Shade-tolerant forest species declined in the initial years following the mass spruce dieback,while hemicryptophytes,therophytes,light-demanding species associated with non-forest seminatural communities,as well as water-demanding forest species,expanded.Oxalis acetosella,the most common understory species in the Białowieża Forest,showed a distinct fluctuation pattern,with strong short-term expansion right after spruce dieback,followed by a gradual decline over the next 3–4 years to a cover level 5 percentage points lower than before the disturbance.Thus,our study revealed that mass spruce dieback selectively affects individual herb species,and their responses can be directional and non-directional(fluctuation).Furthermore,we demonstrated that the mass dieback of spruce temporarily increases plant species diversity(α-diversity).
基金supported by the National Natural Science Foundation of China(31970289 to X.H.and 32170562 to P.L.).
文摘Seed viability is an essential feature for genetic resource conservation as well as sustainable crop production.Long-term storage induces seed viability deterioration or seed aging,accompanied by the accumulation of toxic reactive oxygen species(ROS)to suppress seed germination.Controlled deterioration treatment(CDT)is a gen-eral approach for mimicking seed aging.The transcription factor ANAC089 was previously reported to modulate seed primary germination.In this study,we evaluated the ability of ANAC089 to control seed viability during aging.Compared with that in the wild-type line,the mutation of ANAC089 significantly increased H_(2)O_(2),thereby reducing seed viability after CDT,while the overexpression of ANAC089 reduced H_(2)O_(2) and improved seed long-evity,indicating a critical role for ANAC089 in maintaining seed viability through H_(2)O_(2) signaling.A series of stu-dies have shown that ANAC089 targets and negatively regulates the level of ABI5,an important transmitter of abscisic acid(ABA)signals,to affect seed viability after CDT.Furthermore,ABI5 negatively regulated the expres-sion of VTC2,which is involved in the biosynthesis of the antioxidant ascorbic acid and H_(2)O_(2) scavenging.As a result,ANAC089 attenuates the generation of H_(2)O_(2),thereby enhancing seed viability through the ABI5-VTC2 module during the seed aging process.Taken together,our results reveal a novel mechanism by which ANAC089 enhances seed viability by coordinating ABI5 and VTC2 expression,ultimately preventing the overac-cumulation of H_(2)O_(2),which would have led to reduced seed viability.
文摘Selenium is a trace element that can have both beneficial and harmful effects on aquatic life. The Aby Lagoon is a coastal environment in Côte d’Ivoire that receives selenium inputs from various natural and anthropogenic sources. The aim of this study was to assess the levels of selenium in the sediments of the Aby Lagoon and its tributaries, the Tanoe River and the Tendo Lagoon, and to examine the spatial and seasonal variations of selenium concentrations. Sediment samples were collected from different sites and seasons, and selenium concentrations were measured by atomic fluorescence spectrometry. The results showed that the average concentration of selenium in the sediments of the Aby Lagoon was 0.82 mg/kg, indicating moderate contamination. The concentration of selenium varied between sites and seasons, with higher values in the channel of the Tendo Lagoon and during the dry season. The study highlighted the complexity of selenium dynamics in aquatic ecosystems, and the need to take into account seasonal and spatial variability as well as interactions between environmental factors. The study also suggested potential ecotoxicological risks for some sensitive organisms in certain areas of the lagoon. This study contributes to the knowledge of the dynamics of selenium in lagoon ecosystems and to the assessment of the environmental risks associated with its presence.
文摘Abies fabric forest in the eastern slope of Gongga mountain is one type of subalpine dark coniferous forests of southwestern China. It is located on the southeastern edge of the Qinghai-Tibet plateau and is sensitive to climatic changes. A process-oriented biogeochemical model, Forest-DNDC, was applied to simulate the effects of climatic factors, temperature and precipitation changes on carbon characteristics, and greenhouse gases (GHGs) emissions in A. fabric forest. Validation indicated that the Forest-DNDC could be used to predict carbon characteristics and GHGs emissions with reasonable accuracy. The model simulated carbon fluxes, soil carbon dynamics, soil CO2, N2O, and NO emissions with the changes of temperature and precipitation conditions. The results showed that with variation in the baseline temperature from -2℃ to +2℃, the gross primary production (GPP) and soil organic carbon (SOC) increased, and the net primary production (NPP) and net ecosystem production (NEP) decreased because of higher respiration rate. With increasing baseline precipitation the GPP and NPP increased slightly, and the NEP and SOC showed decreasing trend. Soil CO2 emissions increased with the increase of temperature, and CO2 emissions changed little with increased baseline precipitation. With increased temperature and decreased baseline temperature, the total annual soil N2O emissions increased. With the variation of baseline temperature from -2℃ to +2℃, the total annual soil NO emissions increased. The total annual N2O and NO emissions showed increasing trends with the increase of precipitation. The biogeochemical simulation of the typical forest indicated that temperature changes strongly affected carbon fluxes, soil carbon dynamics, and soil GHGs emissions. The precipitation was not a principal factor affecting carbon fluxes, soil carbon dynamics, and soil CO2 emissions, but changes in precipitation could exert strong effect on soil N2O and NO emissions.