This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of...This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5x10^7/m.The separated flow was generated using finite span forward facing steps.An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make mul- ti-channel measurements of the fluctuating surface heat trtansfer within the separated flow.Conditional sampling ana- lysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness.The compression waves con- verge into a single leading shock beyond the boundary layer.The shock structure is unsteady and undergoes large-scale motion in the streamwise direction.The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave.There exists a wide band of frequency of oscillations of the shock system.Most of the frequencies are in the range of 1-3 kHz.The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave.This inter mittent phenomenon is considered as the consequence of the large-scale shock system oscillations.Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed.展开更多
The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It...The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.展开更多
The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacemen...The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.展开更多
A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-inter...A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction(SWBLI).To capture the essential behavior of this complex flow,the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme.The first order moment of turbulent fluctuations,retained by a novel average scheme,and the turbulent length scale,can be determined from the momentum equations and mechanical energy equation of the fluctuation flow,respectively.The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results.Comparisons between the computational results and experimental data were carried out for velocity profiles,pressure distribution,skin friction coefficient,Reynolds stress as well as streamline vectors distribution.Without using any empirical coefficients and wall functions,the numerical results were in good agreement with the available experimental data,further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results.展开更多
A hypersonic vehicle encounters a wide range of conditions during its complete flight regime.These flight conditions may vary from low to high Mach numbers with varying angles of attack.The near-wall viscous dissipati...A hypersonic vehicle encounters a wide range of conditions during its complete flight regime.These flight conditions may vary from low to high Mach numbers with varying angles of attack.The near-wall viscous dissipation associated with flows at combined high Mach and Reynolds numbers leads to significant wall heat transfer rates and shear stresses.The shock wave/boundary-layer interaction results in a flow separation region,which commonly augments total pressure losses in the flow and lowers the efficiency of aerodynamic control surfaces such as fins installed on a vehicle.The standard turbulence models,when used to resolve such flows,result in incorrect separation bubble size for large separated flows.Therefore,it results in an inaccurate aerodynamic load,such as the wall pressures,skin friction distribution,and heat transfer rate.In previous studies,the application of the shock-unsteadiness correction to the standard two-equation k-ωturbulence model improved the separation bubble size leading to an accurate pressure prediction and shock definition with the assumption of constant Prandtl number.In the present work,the new shock-unsteadiness modification to the k-ωturbulence model is applied to the hypersonic compression corner flows.This new model with variable Prandtl number is based on the model parameter,which depends upon the local density ratio.The computed wall pressures,heat flux and flow field are compared to the experimental data.A parametric study is carried out by varying compression deflection angles,free stream Reynolds number and wall temperatures to compute the flow field and wall data accurately,particularly in the shock boundary layer interaction region.The new shockunsteadiness modified k-ωmodel with variable Prandtl number shows an accurate prediction of initial pressure rise location,pressure distribution in the plateau region and heat flux in comparison to the standard k-ωmodel.展开更多
Direct numerical simulation(DNS)of shock wave/turbulent boundary layer interaction(SWTBLI)with pulsed arc discharge is carried out in this paper.The subject in the study is a Ma=2.9 compression flow over a 24-degree r...Direct numerical simulation(DNS)of shock wave/turbulent boundary layer interaction(SWTBLI)with pulsed arc discharge is carried out in this paper.The subject in the study is a Ma=2.9 compression flow over a 24-degree ramp.The numerical approaches were validated by the experimental results in the same flow conditions.The heat source model was added to the Navier-Stokes equation to serve as the energy deposition of the pulsed arc discharge.Four streamwise locations are selected to apply energy deposition.The effect of the pulsed arc discharge on the ramp-induced flow separation has been studied in depth.The DNS results demonstrate the incentive locations play a dominant role in suppressing the separated flow.Results show that pulsed heating is characterized by a thermal blockage,which leads to streamwise deflection.The incentive locations upstream the interaction zone of the base flow have a better control effect.The separation bubble shape shows as"spikes",and the downstream flow of the heated region is accelerated due to the momentum exchange between the upper boundary layer and the bottom boundary layer.The high-speed upper fluid is transferred to the bottom,and thus enhances its ability to resist the flow separation.More stripe vortex structures are also generated at the edge of the flat-plate.Furthermore,the turbulent kinetic disturbance energy is increased in the flow filed.The disturbances that originate from the pulsed heating are capable of increasing the turbulent intensity and then diminishing the trend of flow separation.展开更多
基金The project supported by National Natural Science Foundation of China
文摘This paper presents the results of an experimental study of the unsteady nature of a hypersonic sepa- rated turbulent flow.The nominal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5x10^7/m.The separated flow was generated using finite span forward facing steps.An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make mul- ti-channel measurements of the fluctuating surface heat trtansfer within the separated flow.Conditional sampling ana- lysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness.The compression waves con- verge into a single leading shock beyond the boundary layer.The shock structure is unsteady and undergoes large-scale motion in the streamwise direction.The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave.There exists a wide band of frequency of oscillations of the shock system.Most of the frequencies are in the range of 1-3 kHz.The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave.This inter mittent phenomenon is considered as the consequence of the large-scale shock system oscillations.Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed.
文摘The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.
基金supported by the National Natural Science Foundation of China(Nos.11772325 and 11621202)。
文摘The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.
基金Aerospace Power Foundation(6141B09050397)Foudamental Reasearch Foundation of North China University of Technology(110052971921/042).
文摘A transonic turbulent separation flow in a converging-diverging transonic diffuser was studied,when there existed a separation bubble on the top wall of the diffuser triggered by strong shock-wave-boundary-layer-interaction(SWBLI).To capture the essential behavior of this complex flow,the current study utilized an anisotropic turbulence model developed on the basis of a statistical partial average scheme.The first order moment of turbulent fluctuations,retained by a novel average scheme,and the turbulent length scale,can be determined from the momentum equations and mechanical energy equation of the fluctuation flow,respectively.The two physical quantities were readily used to construct the nonlinear anisotropic eddy viscosity tensor and to significantly improve the computational results.Comparisons between the computational results and experimental data were carried out for velocity profiles,pressure distribution,skin friction coefficient,Reynolds stress as well as streamline vectors distribution.Without using any empirical coefficients and wall functions,the numerical results were in good agreement with the available experimental data,further confirming that the nonlinear anisotropic eddy viscosity tensor is the decisive factor for the success of the computational results.
基金financially supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.DF-043-135-1441。
文摘A hypersonic vehicle encounters a wide range of conditions during its complete flight regime.These flight conditions may vary from low to high Mach numbers with varying angles of attack.The near-wall viscous dissipation associated with flows at combined high Mach and Reynolds numbers leads to significant wall heat transfer rates and shear stresses.The shock wave/boundary-layer interaction results in a flow separation region,which commonly augments total pressure losses in the flow and lowers the efficiency of aerodynamic control surfaces such as fins installed on a vehicle.The standard turbulence models,when used to resolve such flows,result in incorrect separation bubble size for large separated flows.Therefore,it results in an inaccurate aerodynamic load,such as the wall pressures,skin friction distribution,and heat transfer rate.In previous studies,the application of the shock-unsteadiness correction to the standard two-equation k-ωturbulence model improved the separation bubble size leading to an accurate pressure prediction and shock definition with the assumption of constant Prandtl number.In the present work,the new shock-unsteadiness modification to the k-ωturbulence model is applied to the hypersonic compression corner flows.This new model with variable Prandtl number is based on the model parameter,which depends upon the local density ratio.The computed wall pressures,heat flux and flow field are compared to the experimental data.A parametric study is carried out by varying compression deflection angles,free stream Reynolds number and wall temperatures to compute the flow field and wall data accurately,particularly in the shock boundary layer interaction region.The new shockunsteadiness modified k-ωmodel with variable Prandtl number shows an accurate prediction of initial pressure rise location,pressure distribution in the plateau region and heat flux in comparison to the standard k-ωmodel.
基金sponsored by the National Natural Science Foundation of China(91941105,51522606,and 51907205)。
文摘Direct numerical simulation(DNS)of shock wave/turbulent boundary layer interaction(SWTBLI)with pulsed arc discharge is carried out in this paper.The subject in the study is a Ma=2.9 compression flow over a 24-degree ramp.The numerical approaches were validated by the experimental results in the same flow conditions.The heat source model was added to the Navier-Stokes equation to serve as the energy deposition of the pulsed arc discharge.Four streamwise locations are selected to apply energy deposition.The effect of the pulsed arc discharge on the ramp-induced flow separation has been studied in depth.The DNS results demonstrate the incentive locations play a dominant role in suppressing the separated flow.Results show that pulsed heating is characterized by a thermal blockage,which leads to streamwise deflection.The incentive locations upstream the interaction zone of the base flow have a better control effect.The separation bubble shape shows as"spikes",and the downstream flow of the heated region is accelerated due to the momentum exchange between the upper boundary layer and the bottom boundary layer.The high-speed upper fluid is transferred to the bottom,and thus enhances its ability to resist the flow separation.More stripe vortex structures are also generated at the edge of the flat-plate.Furthermore,the turbulent kinetic disturbance energy is increased in the flow filed.The disturbances that originate from the pulsed heating are capable of increasing the turbulent intensity and then diminishing the trend of flow separation.