This study numerically simulated and investigated the flow field characteristics of a typical dual-pulse solid rocket motor with a soft pulse separation device through thermal insulation ablation under high-temperatur...This study numerically simulated and investigated the flow field characteristics of a typical dual-pulse solid rocket motor with a soft pulse separation device through thermal insulation ablation under high-temperature dual-pulse erosion.The ablation rate of ethylene-propylene-diene monomer(EPDM)insulator was measured after the experiment.Experimental results were analyzed through scanning electron microscopy and microcomputed tomography.The ablation mechanism of the EPDM insulator under the operation conditions of a dual-pulse solid rocket motor was evaluated by analyzing the results.The results reveal that the internal flow field of the motor with a soft pulse separation device is uniform.The original charred layer existing on the EPDM insulator surface in the first pulse combustor is the decisive factor affecting the final ablation rate of the dual-pulse motor during the second pulse operation,and the ablation characteristic region is easily formed with the exfoliation of the charred layer.The ablation rate difference of the insulator increases with gas velocity.展开更多
The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide tr...The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide track, causing serious problems to the operation and decreasing the lifetime of the launcher. Therefore, it is imperative to study the destructive mechanism so as to guarantee the smooth operation and increase the lifetime of military equipments. Accordingly, HTASED and corrosion were systematically observed and analyzed with the emphasis placed on the mechanism investigations making use of a series evaluation tests, typical missile engine simulation tests, national military standard methods, scanning electron microscopy and electrochemical corrosion tests. It is found that the thermal impact of high-temperature flame and supersonic erosion of corrosive melting particle jet of the SAMHSE lead to surface defects of micro-cracks, denudation and corrosive residue. Some defects reach to metal base becoming to "corrosive channels". Repetitive HTASED may cause ablation-adhesion fatigue stress, which enhances the surface corrosion and destruction. HTASED and corrosion are related to the type of a SAMHSE fuel and experience of the launcher. Surface destruction is related to synergistic effects of the HTASED. The ablated and failed Al or steel surface is liable to electrochemical corrosion characterized by pitting in humid and salt-spray environment.展开更多
BACKGROUND Percutaneous transhepatic cholangiodrainage(PTCD)and endoscopic retrograde cholangiopancreatography/endoscopic nasobiliary drainage are the most common clinical procedures for jaundice control in patients w...BACKGROUND Percutaneous transhepatic cholangiodrainage(PTCD)and endoscopic retrograde cholangiopancreatography/endoscopic nasobiliary drainage are the most common clinical procedures for jaundice control in patients with unresectable malignant obstructive jaundice,yet the safety and effect of endobiliary radiofrequency ablation(EB-RFA)combined PTCD is rarely reported,in this article,we report our experience of EB-RFA combined PTCD in such patients.AIM To retrospectively study the efficacy and safety of EB-RFA combined PTCD in patients with unresectable malignant obstructive jaundice.METHODS Patients with unresectable malignant obstructive jaundice treated with EB-RFA under PTCD were selected,the bile ducts of the right posterior lobe was selected as the target bile ducts in all cases.The general conditions of all patients,preoperative tumour markers,total bilirubin(TBIL),direct bilirubin(DBIL),albumin(ALB),alkaline phosphatase(ALP),and glutamyl transferase(GGT)before and on the 7th day after the procedure,as well as perioperative complications,stent patency time and patient survival were recorded.RESULTS All patients successfully completed the operation,TBIL and DBIL decreased significantly in all patients at the 7th postoperative day(P=0.009 and 0.006,respectively);the values of ALB,ALP and GGT also decreased compared with the preoperative period,but the difference was not statistically significant.Perioperative biliary bleeding occurred in 2 patients,which was improved after transfusion of blood and other conservative treatments,pancreatitis appeared in 1 patient after the operation,no serious complication and death happened after operation.Except for 3 patients with loss of visits,the stent patency rate of the remaining 14 patients was 100%71%and 29%at the 1^(st),3^(rd),and 6^(th)postoperative months respectively,with a median survival of 4 months.CONCLUSION EB-RFA under PTCD in patients with unresectable malignant obstructive jaundice has a satisfactory therapeutic effect and high safety,which is worthy of further clinical practice.展开更多
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg...Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
BACKGROUND The incidence and mortality rates of primary hepatocellular carcinoma(HCC)are high,and the conventional treatment is radiofrequency ablation(RFA)with transcatheter arterial chemoembolization(TACE);however,t...BACKGROUND The incidence and mortality rates of primary hepatocellular carcinoma(HCC)are high,and the conventional treatment is radiofrequency ablation(RFA)with transcatheter arterial chemoembolization(TACE);however,the 3-year survival rate is still low.Further,there are no visual methods to effectively predict their prognosis.AIM To explore the factors influencing the prognosis of HCC after RFA and TACE and develop a nomogram prediction model.METHODS Clinical and follow-up information of 150 patients with HCC treated using RFA and TACE in the Hangzhou Linping Hospital of Traditional Chinese Medicine from May 2020 to December 2022 was retrospectively collected and recorded.We examined their prognostic factors using multivariate logistic regression and created a nomogram prognosis prediction model using the R software(version 4.1.2).Internal verification was performed using the bootstrapping technique.The prognostic efficacy of the nomogram prediction model was evaluated using the concordance index(CI),calibration curve,and receiver operating characteristic RESULTS Of the 150 patients treated with RFA and TACE,92(61.33%)developed recurrence and metastasis.Logistic regression analysis identified six variables,and a predictive model was created.The internal validation results of the model showed a CI of 0.882.The correction curve trend of the prognosis prediction model was always near the diagonal,and the mean absolute error before and after internal validation was 0.021.The area under the curve of the prediction model after internal verification was 0.882[95%confidence interval(95%CI):0.820-0.945],with a specificity of 0.828 and sensitivity of 0.656.According to the Hosmer-Lemeshow test,χ^(2)=3.552 and P=0.895.The predictive model demonstrated a satisfactory calibration,and the decision curve analysis demonstrated its clinical applicability.CONCLUSION The prognosis of patients with HCC after RFA and TACE is affected by several factors.The developed prediction model based on the influencing parameters shows a good prognosis predictive efficacy.展开更多
BACKGROUND The recurrence rate of liver cancer after surgery is high.Radiofrequency ablation(RFA)combined with transcatheter arterial chemoembolization(TACE)is an effective treatment for liver cancer;however,its effic...BACKGROUND The recurrence rate of liver cancer after surgery is high.Radiofrequency ablation(RFA)combined with transcatheter arterial chemoembolization(TACE)is an effective treatment for liver cancer;however,its efficacy in recurrent liver cancer remains unclear.AIM To investigate the clinical effect of TACE combined with RFA in the treatment of recurrent liver cancer.METHODS Ninety patients with recurrent liver cancer were divided into 2 groups according to treatment plan:Control(RFA alone);and experimental[TACE combined with RFA(TACE+RFA)].The incidence of increased alanine aminotransferase levels,complications,and other indices were compared between the two groups before and after the procedures.RESULTS One month after the procedures,the short-term efficacy rate and Karnofsky Performance Status scores of the experimental group were significantly higher than those of the control group(P<0.05).Alpha-fetoprotein(AFP)and total bilirubin levels were lower than those in the control group(P<0.05);The overall response rate was 82.22%and 66.67%in the experimental and control groups,respectively;The disease control rate was 93.33%and 82.22%in the experimental and control groups,respectively,the differences are statistically significant(P<0.05).And there were no statistical differences in complications between the two groups(P>0.05).CONCLUSION TACE+RFA was effective for the treatment of recurrent liver cancer and significantly reduced AFP levels and improved various indices of liver function.展开更多
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for...The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.展开更多
Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed so...Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,s...Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.展开更多
Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerla...Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.展开更多
BACKGROUND Hypermenorrhea is characterized by excessive menstrual bleeding that causes severe anemia and interferes with everyday life.This condition can restrict women’s social activities and decrease their quality ...BACKGROUND Hypermenorrhea is characterized by excessive menstrual bleeding that causes severe anemia and interferes with everyday life.This condition can restrict women’s social activities and decrease their quality of life.Microwave endometrial ablation(MEA)using a 2.45-GHz energy source is a minimally invasive alternative to conventional hysterectomy for treating hypermenorrhea that is resistant to conservative treatment,triggered by systemic disease or medications,or caused by uterine myomas and fibrosis.The popularity of MEA has increased worldwide.Although MEA can safely and effectively treat submucous myomas,some patients may still experience recurrent hypermenorrhea postoperatively and may require additional treatment.AIM To investigate the efficacy of MEA combined with transcervical resection(TCR).METHODS Participants underwent cervical and endometrial evaluations.Magnetic resonance imaging and hysteroscopy were performed to evaluate the size and location of the myomas.TCR was performed before MEA using a hystero-resectoscope.MEA was performed using transabdominal ultrasound.The variables included operation time,number of ablation cycles,length of hospital stay,and visual analog scale cores for hypermenorrhea,dysmenorrhea,and treatment satisfaction at 3 and 6 mo postoperatively.The postoperative incidence of amenorrhea,changes in hemoglobin concentrations,and MEA-related complications were evaluated.RESULTS A total of 34 women underwent a combination of MEA and TCR during the study period.Two patients were excluded from the study as their histopathological tests identified uterine malignancies(uterine sarcoma and endometrial cancer).The 32 eligible women(6 nulliparous,26 multiparous)had a mean age of 45.2±4.3 years(range:36–52 years).Patients reported very severe hypermenorrhea(10/10 points on the visual analog scale)before the procedure.However,after the procedure,the hypermenorrhea scores decreased to 1.2±1.3 and 0.9±1.3 at 3 and 6 mo,respectively(P<0.001).The mean follow-up duration was 33.8±16.8 mo.Although 10 women(31.3%)developed amenorrhea during this period,none experienced a recurrence of hypermenorrhea.No surgical complications were observed.CONCLUSION Reducing the size of uterine myomas by combining MEA and TCR can safely and effectively treat hypermenorrhea in patients with submucous myomas.展开更多
Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill ...Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of...We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.展开更多
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu...Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.展开更多
aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This stud...aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.展开更多
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ...Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.展开更多
基金financially supported by the National Natural Science Foundation of China,under grant numbers 51876177,51276150,and 51576165。
文摘This study numerically simulated and investigated the flow field characteristics of a typical dual-pulse solid rocket motor with a soft pulse separation device through thermal insulation ablation under high-temperature dual-pulse erosion.The ablation rate of ethylene-propylene-diene monomer(EPDM)insulator was measured after the experiment.Experimental results were analyzed through scanning electron microscopy and microcomputed tomography.The ablation mechanism of the EPDM insulator under the operation conditions of a dual-pulse solid rocket motor was evaluated by analyzing the results.The results reveal that the internal flow field of the motor with a soft pulse separation device is uniform.The original charred layer existing on the EPDM insulator surface in the first pulse combustor is the decisive factor affecting the final ablation rate of the dual-pulse motor during the second pulse operation,and the ablation characteristic region is easily formed with the exfoliation of the charred layer.The ablation rate difference of the insulator increases with gas velocity.
基金Project(59925513) supported by the National Natural Science Foundation of China through the Excellent Youth Scientist Fund
文摘The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide track, causing serious problems to the operation and decreasing the lifetime of the launcher. Therefore, it is imperative to study the destructive mechanism so as to guarantee the smooth operation and increase the lifetime of military equipments. Accordingly, HTASED and corrosion were systematically observed and analyzed with the emphasis placed on the mechanism investigations making use of a series evaluation tests, typical missile engine simulation tests, national military standard methods, scanning electron microscopy and electrochemical corrosion tests. It is found that the thermal impact of high-temperature flame and supersonic erosion of corrosive melting particle jet of the SAMHSE lead to surface defects of micro-cracks, denudation and corrosive residue. Some defects reach to metal base becoming to "corrosive channels". Repetitive HTASED may cause ablation-adhesion fatigue stress, which enhances the surface corrosion and destruction. HTASED and corrosion are related to the type of a SAMHSE fuel and experience of the launcher. Surface destruction is related to synergistic effects of the HTASED. The ablated and failed Al or steel surface is liable to electrochemical corrosion characterized by pitting in humid and salt-spray environment.
文摘BACKGROUND Percutaneous transhepatic cholangiodrainage(PTCD)and endoscopic retrograde cholangiopancreatography/endoscopic nasobiliary drainage are the most common clinical procedures for jaundice control in patients with unresectable malignant obstructive jaundice,yet the safety and effect of endobiliary radiofrequency ablation(EB-RFA)combined PTCD is rarely reported,in this article,we report our experience of EB-RFA combined PTCD in such patients.AIM To retrospectively study the efficacy and safety of EB-RFA combined PTCD in patients with unresectable malignant obstructive jaundice.METHODS Patients with unresectable malignant obstructive jaundice treated with EB-RFA under PTCD were selected,the bile ducts of the right posterior lobe was selected as the target bile ducts in all cases.The general conditions of all patients,preoperative tumour markers,total bilirubin(TBIL),direct bilirubin(DBIL),albumin(ALB),alkaline phosphatase(ALP),and glutamyl transferase(GGT)before and on the 7th day after the procedure,as well as perioperative complications,stent patency time and patient survival were recorded.RESULTS All patients successfully completed the operation,TBIL and DBIL decreased significantly in all patients at the 7th postoperative day(P=0.009 and 0.006,respectively);the values of ALB,ALP and GGT also decreased compared with the preoperative period,but the difference was not statistically significant.Perioperative biliary bleeding occurred in 2 patients,which was improved after transfusion of blood and other conservative treatments,pancreatitis appeared in 1 patient after the operation,no serious complication and death happened after operation.Except for 3 patients with loss of visits,the stent patency rate of the remaining 14 patients was 100%71%and 29%at the 1^(st),3^(rd),and 6^(th)postoperative months respectively,with a median survival of 4 months.CONCLUSION EB-RFA under PTCD in patients with unresectable malignant obstructive jaundice has a satisfactory therapeutic effect and high safety,which is worthy of further clinical practice.
基金the financial support received from the University Grants Commission (UGC) in the form of a Junior Research Fellowship (JRF)。
文摘Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
文摘BACKGROUND The incidence and mortality rates of primary hepatocellular carcinoma(HCC)are high,and the conventional treatment is radiofrequency ablation(RFA)with transcatheter arterial chemoembolization(TACE);however,the 3-year survival rate is still low.Further,there are no visual methods to effectively predict their prognosis.AIM To explore the factors influencing the prognosis of HCC after RFA and TACE and develop a nomogram prediction model.METHODS Clinical and follow-up information of 150 patients with HCC treated using RFA and TACE in the Hangzhou Linping Hospital of Traditional Chinese Medicine from May 2020 to December 2022 was retrospectively collected and recorded.We examined their prognostic factors using multivariate logistic regression and created a nomogram prognosis prediction model using the R software(version 4.1.2).Internal verification was performed using the bootstrapping technique.The prognostic efficacy of the nomogram prediction model was evaluated using the concordance index(CI),calibration curve,and receiver operating characteristic RESULTS Of the 150 patients treated with RFA and TACE,92(61.33%)developed recurrence and metastasis.Logistic regression analysis identified six variables,and a predictive model was created.The internal validation results of the model showed a CI of 0.882.The correction curve trend of the prognosis prediction model was always near the diagonal,and the mean absolute error before and after internal validation was 0.021.The area under the curve of the prediction model after internal verification was 0.882[95%confidence interval(95%CI):0.820-0.945],with a specificity of 0.828 and sensitivity of 0.656.According to the Hosmer-Lemeshow test,χ^(2)=3.552 and P=0.895.The predictive model demonstrated a satisfactory calibration,and the decision curve analysis demonstrated its clinical applicability.CONCLUSION The prognosis of patients with HCC after RFA and TACE is affected by several factors.The developed prediction model based on the influencing parameters shows a good prognosis predictive efficacy.
文摘BACKGROUND The recurrence rate of liver cancer after surgery is high.Radiofrequency ablation(RFA)combined with transcatheter arterial chemoembolization(TACE)is an effective treatment for liver cancer;however,its efficacy in recurrent liver cancer remains unclear.AIM To investigate the clinical effect of TACE combined with RFA in the treatment of recurrent liver cancer.METHODS Ninety patients with recurrent liver cancer were divided into 2 groups according to treatment plan:Control(RFA alone);and experimental[TACE combined with RFA(TACE+RFA)].The incidence of increased alanine aminotransferase levels,complications,and other indices were compared between the two groups before and after the procedures.RESULTS One month after the procedures,the short-term efficacy rate and Karnofsky Performance Status scores of the experimental group were significantly higher than those of the control group(P<0.05).Alpha-fetoprotein(AFP)and total bilirubin levels were lower than those in the control group(P<0.05);The overall response rate was 82.22%and 66.67%in the experimental and control groups,respectively;The disease control rate was 93.33%and 82.22%in the experimental and control groups,respectively,the differences are statistically significant(P<0.05).And there were no statistical differences in complications between the two groups(P>0.05).CONCLUSION TACE+RFA was effective for the treatment of recurrent liver cancer and significantly reduced AFP levels and improved various indices of liver function.
基金supported by the Natural Science Foundation of Qinghai Province(Grant No.2024-ZJ-987).
文摘The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.
基金supported by the National Natural Scienceof China (No.52175208)Scientific Research and Technology Development Project of CNPC (No.2023ZZ11)+1 种基金Fundamental Research and Strategic Reserve Technology Research Fund Project of CNPC (No.2023DQ03-03)Study on Key Technologies of Production Increase and Transformation of Gulong Shale Oil (2021ZZ10-04)。
文摘Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
文摘The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.22178107,U21A2060,22178116)Xinjiang Uygur Autonomous Region Key Research and Development Program(Grant No.2022B01030)Shanghai Pujiang Program(Grant No.21PJD019)。
文摘Lightweight and high-toughness carbon fiber/phenolic ablator(CFPA)is required as the Thermal Protection System(TPS)material of aerospace vehicles for next-generation space missions.To improve the ablative properties,silica sol with good particle size distribution prepared using tetramethoxysilane(TMOS)was blended with natural rubber latex and deposited onto carbon fiber felt,which was then integrated with phenolic aerogel matrix,introducing nano-silica into the framework of CFPA.The modified CFPA with a low density of 0.28—0.31 g/cm3exhibits strain-in-fracture as high as 31.2%and thermal conductivity as low as 0.054 W/(m·K).Furthermore,a trace amount of nano-silica could effectively protect CFPA from erosion of oxidizing atmosphere in different high-temperature environments.The oxyacetylene ablation test of 3000°C for 20 s shows a mass ablation rate of 0.0225 g/s,a linear ablation rate of 0.209 mm/s for the modified CFPA,which are 9.64%and 24.82%lower than the unmodified one.Besides,the long-time butane ablation test of 1200°C for 200 s shows an insignificant recession with mass and linear ablation rate of 0.079 g/s and 0.039 mm/s,16.84%and 13.33%lower than the unmodified one.Meanwhile,the fixed thermocouple in the test also demonstrates a good thermal insulation performance with a low peak back-face temperature of 207.7°C,12.25%lower than the unmodified one.Therefore,the nano-silica modified CFPA with excellent overall performance presents promising prospects in high-temperature aerospace applications.
基金Supported by National Natural Science Foundation of China(No.82271119)Shanghai Rising-Star Program(No.23QA1401000)+1 种基金Healthy Young Talents Project of Shanghai Municipal Health Commission(No.2022YQ015)Project of Shanghai Science and Technology(No.21Y11909800).
文摘Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.
文摘BACKGROUND Hypermenorrhea is characterized by excessive menstrual bleeding that causes severe anemia and interferes with everyday life.This condition can restrict women’s social activities and decrease their quality of life.Microwave endometrial ablation(MEA)using a 2.45-GHz energy source is a minimally invasive alternative to conventional hysterectomy for treating hypermenorrhea that is resistant to conservative treatment,triggered by systemic disease or medications,or caused by uterine myomas and fibrosis.The popularity of MEA has increased worldwide.Although MEA can safely and effectively treat submucous myomas,some patients may still experience recurrent hypermenorrhea postoperatively and may require additional treatment.AIM To investigate the efficacy of MEA combined with transcervical resection(TCR).METHODS Participants underwent cervical and endometrial evaluations.Magnetic resonance imaging and hysteroscopy were performed to evaluate the size and location of the myomas.TCR was performed before MEA using a hystero-resectoscope.MEA was performed using transabdominal ultrasound.The variables included operation time,number of ablation cycles,length of hospital stay,and visual analog scale cores for hypermenorrhea,dysmenorrhea,and treatment satisfaction at 3 and 6 mo postoperatively.The postoperative incidence of amenorrhea,changes in hemoglobin concentrations,and MEA-related complications were evaluated.RESULTS A total of 34 women underwent a combination of MEA and TCR during the study period.Two patients were excluded from the study as their histopathological tests identified uterine malignancies(uterine sarcoma and endometrial cancer).The 32 eligible women(6 nulliparous,26 multiparous)had a mean age of 45.2±4.3 years(range:36–52 years).Patients reported very severe hypermenorrhea(10/10 points on the visual analog scale)before the procedure.However,after the procedure,the hypermenorrhea scores decreased to 1.2±1.3 and 0.9±1.3 at 3 and 6 mo,respectively(P<0.001).The mean follow-up duration was 33.8±16.8 mo.Although 10 women(31.3%)developed amenorrhea during this period,none experienced a recurrence of hypermenorrhea.No surgical complications were observed.CONCLUSION Reducing the size of uterine myomas by combining MEA and TCR can safely and effectively treat hypermenorrhea in patients with submucous myomas.
文摘Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138).
文摘We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials.
基金The authors extend their appreciation to Researchers Supporting Project number(RSP2024R390),King Saud University,Riyadh,Saudi Arabia.
文摘Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.
基金supported by the Third Xinjiang Scientific Expedition and Research Program (Grant No. 2022xjkk0602)National Cryosphere Desert Data Center (No. 2021kf02)Xinjiang Jiaotou’s Unveiling and Commanding System Project in 2021 (ZKXFWCG 2022060004)。
文摘aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.
基金supported by the National Natural Science Foundation of China (Grant Nos.12205196 and 12275040)the National Key Research and Development Program of China (Grant No.2022YFE03090003)。
文摘Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.