期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
RNAi-mediated suppression of the abscisic acid catabolism gene Os ABA8ox1 increases abscisic acid content and tolerance to saline–alkaline stress in rice(Oryza sativa L.) 被引量:7
1
作者 Xiaolong Liu Xianzhi Xie +6 位作者 Chongke Zheng Lixing Wei Xiaowei Li Yangyang Jin Guohui Zhang Chang-Jie Jiang Zhengwei Liang 《The Crop Journal》 SCIE CSCD 2022年第2期354-367,共14页
Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation o... Saline–alkaline(SA) stress is characterized by high salinity and high alkalinity(high p H), which severely inhibit plant growth and cause huge losses in crop yields worldwide. Here we show that a moderate elevation of endogenous abscisic acid(ABA) levels by RNAi-mediated suppression of Os ABA8 ox1(Os ABA8 ox1-kd), a key ABA catabolic gene, significantly increased tolerance to SA stress in rice plants. We produced Os ABA8 ox1-kd lines in two different japonica cultivars, Dongdao 4 and Nipponbare. Compared with nontransgenic control plants(WT), the Os ABA8 ox1-kd seedlings accumulated 25.9%–55.7% higher levels of endogenous ABA and exhibited reduced plasmalemma injury, ROS accumulation and Na;/K;ratio, and higher survival rates, under hydroponic alkaline conditions simulated by 10, 15, and 20 mmol L-1 of Na;CO;. In pot trials using SA field soils of different alkali levels(p H 7.59, 8.86, and 9.29), Os ABA8 ox1–kd plants showed markedly higher seedling survival rates and more vigorous plant growth, resulting in significantly higher yield components including panicle number(85.7%–128.6%), spikelets per panicle(36.9%–61.9%), branches(153.9%–236.7%), 1000–kernel weight(20.0%–28.6%), and percentage of filled spikelets(96.6%–1340.8%) at harvest time. Under severe SA soil conditions(p H = 9.29, EC = 834.4 μS cm-1),Os ABA8 ox1-kd lines showed an 194.5%–1090.8% increase in grain yield per plant relative to WT plants.These results suggest that suppression of Os ABA8 ox1 to increase endogenous ABA levels provides a new molecular approach for improving rice yield in SA paddies. 展开更多
关键词 Rice(Oryza sativa L.) Saline–alkaline stress abscisic acid(aba) Osaba8ox1-kd Endogenous aba levels
下载PDF
Effects of Abscisic Acid Treatment on Berry Coloration and Expression of Flavonoid Biosynthesis Genes in Grape 被引量:6
2
作者 Ayako Katayama-Ikegami Tomoaki Sakamoto +2 位作者 Kana Shibuya Takane Katayama Mei Gao-Takai 《American Journal of Plant Sciences》 2016年第9期1325-1336,共12页
In order to enhance berry coloration of bright-red grape cultivars, the effects of abscisic acid (ABA) treatment on the quantity and composition of anthocyanins as well as the expression of genes related to flavonoid ... In order to enhance berry coloration of bright-red grape cultivars, the effects of abscisic acid (ABA) treatment on the quantity and composition of anthocyanins as well as the expression of genes related to flavonoid biosynthesis in the berry were examined. Exogenous ABA treatment increased anthocyanin content, especially petunidin- and malvidin-type anthocyanins. Quantitative real-time PCR analysis revealed that ABA treatment around véraison resulted in the upregulation of genes encoding enzymes responsible for both general flavonoid and anthocyanin biosynthesis. On the other hand, the gene expressions of enzymes involved in proanthocyanidin synthesis were drastically decreased at véraison and remained extremely low even with ABA treatment. Thus, increases in the total amount and composition ratios of petunidin- and malvidin-type anthocyanins were mainly caused by ABA-induced upregulation of uridine diphosphate glucose flavonoid glucosyl transferase, glutathione S-transferase 4, O-methyl transferase and flavonoid 3’, 5’ hydroxylase expression, resulting in the deep coloration of berry of skin. 展开更多
关键词 abscisic acid (aba) ANTHOCYANIN Biosynthetic Enzyme Gene Expression Transcription Factor
下载PDF
Signal Transduction from Water Stress Perception to ABA Accumulation 被引量:12
3
作者 贾文锁 邢宇 +1 位作者 卢从明 张建华 《Acta Botanica Sinica》 CSCD 2002年第10期1135-1141,共7页
To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidl... To cope with unpredictably environmental perturbations and sometimes stresses, plants have evolved with some mechanisms so that these developing stresses can be sensitively perceived and the physiology can be rapidly regulated. Such perception and regulation can be a kind of feed_forward mechanism and may involve many biochemical and physiological processes and/or the expression of many genes. Although many dehydration_responsive genes have been identified, much fewer of their functions have been known. Such stress_ induced responses should include the initial perception of the dehydration signal, then the complicated signal transduction and cellular transmission until to the final gene activation or expression. As an important plant stress hormone abscisic acid (ABA) mediates many such responses. We believe that starting from the initial perception of dehydration to the gene expression leading to the stress_induced ABA biosynthesis is the most important stress signal transduction pathway among all the plant responses to stresses. Identification of the genes involved and understanding their roles during stress perception and physiological regulation shall be the most important and interesting research field in the coming years. 展开更多
关键词 water stress PERCEPTION TRANSDUCTION abscisic acid (aba)
下载PDF
Effects of ABA on Photosynthetic Characteristics of Pods and Yield of Brassica napus 被引量:4
4
作者 李俊 张春雷 +3 位作者 马霓 余利平 晁赢 李玲 《Agricultural Science & Technology》 CAS 2012年第4期760-762,903,共4页
[Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yiel... [Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yield components, to provide theoretical basis for cultivation of high-yield rapeseed. [Method] At the end of flowering stage, the rape plants were separately sprayed with 1, 2, 100 and 200μmol/L of ABA; photosynthetic parameters, water use efficiency (WUE), yield and yield components of the rape plants were investigated 0, 5, 10 and 15 d later, respectively. [Result] ABA treatment with different concentrations significantly changed pod photosynthetic parameters and yield components of rapeseed. Low concentra- tions of ABA could improve pod's net photosynthetic rate and yield components while high concentrations had the contrary effect. [Conclusion] Whether ABA func- tioned in inhibiting or promoting role might depend on the interaction between endogenous hormone levels and exogenous ABA concentration. Improvement of WUE would be the main reason for yield increasing. 展开更多
关键词 Brassica napus L POD abscisic acid aba Photosynthetic characteristics YIELD
下载PDF
Identification of ABA-responsive genes in rice shoots via cDNA macroar- ray 被引量:7
5
作者 FANGLIN SHOULINGXU 《Cell Research》 SCIE CAS CSCD 2003年第1期59-68,共10页
Phytohormone abscisic acid (ABA) was critical for many plant growth and developmental processesincluding seed maturation, germination and response to environmental factors. With the purpose to detectthe possible ABA r... Phytohormone abscisic acid (ABA) was critical for many plant growth and developmental processesincluding seed maturation, germination and response to environmental factors. With the purpose to detectthe possible ABA related signal transduction pathways, we tried to isolate ABA-regulated genes throughcDNA macroarray technology using ABA-treated rice seedling as materials (under treatment for 2, 4, 8 and12 h). Of 6144 cDNA clones tested, 37 differential clones showing induction or suppression for at least onetime, were isolated. Of them 30 and 7 were up- or down-regulated respectively. Sequence analyses revealedthat the putative encoded proteins were involved in different possible processes, including transcription,metabolism and resistance, photosynthesis, signal transduction, and seed maturation. 6 cDNA clones werefound to encode proteins with unknown functions. Regulation by ABA of 7 selected clones relating to signaltransduction or metabolism was confirmed by reverse transcription PCR. In addition, some clones werefurther shown to be regulated by other plant growth regulators including auxin and brassinosteroid, which,however, indicated the complicated interactions of plant hormones. Possible signal transduction pathwaysinvolved in ABA were discussed. 展开更多
关键词 Oryza saliva abscisic acid (aba) cDNA macroarray responsive genes signal transduc- tion
下载PDF
An efficient corrosion inhibitor of cassava starch graft copolymer for aluminum in phosphoric acid 被引量:3
6
作者 Shuduan Deng Xianghong Li Guanben Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期222-231,共10页
Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this prob... Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this problem,cassava starch-acryl amide graft copolymer(CS-AAGC)was prepared through grafting acryl amide(AA)with cassava starch(CS),and it was firstly examined as an efficient inhibitor for 1060 aluminum in 1.0 mol·L^(-1)H_(3)PO_(4) media.The adsorption behavior of CS-AAGC and its electrochemical mechanism were investigated by weight loss and electrochemical methods.Additionally,the inhibited aluminum surface was fully characterized by a series of SEM,AFM,contact angle measurements and XPS.Results confirm that CS-AAGC performs better inhibitive ability than CS,AA or CS/AA mixture,and the maximum inhibition efficiency of 1.0 g·L^(-1)CS-AAGC is 90.6%at 20℃.CS-AAGC acts as a mixed-type inhibitor while mainly retards the anodic reaction.EIS has three time constants,and the polarization resistance is significantly increased in the presence of CS-AAGC.The micrograph of inhibited aluminum surface is of hydrophobic nature with low surface roughness and little corrosion degree. 展开更多
关键词 Rice(Oryza sativa L.) Saline–alkaline stress abscisic acid(aba) Os aba8ox1-kd Endogenous aba levels
下载PDF
Cloning of MYB2 Gene from Dryopteris fragrans and Its Response to ABA and Drought Stress 被引量:3
7
作者 Li Jie Chen Ling-ling Chang Ying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第4期38-45,共8页
The myeloblastosis oncogenes(MYB)are important transcription factors that facilitate induction of variously develop-mental and stress responsive genes.They are hence,emerging as key players in improving stress toleran... The myeloblastosis oncogenes(MYB)are important transcription factors that facilitate induction of variously develop-mental and stress responsive genes.They are hence,emerging as key players in improving stress tolerance of plants in response to several abiotic stresses.It was predicted that DfMYB2 contained an open reading frame(ORF)of 1621 bp coding 377 amino acid residues with molecular weight of 41.5 ku.It had 50 potential phosphorylation sites,44 potential N-glycosylation sites and one trans-membrane domain.In neighbor-joining(NJ)phylogenetic tree,DfMYB2 was close to the branch of angiosperms.The subcellular localization of DfMYB2 was in nucleus.The expressions of DfMYB2 increased gradually in the filament,prothalli and sporophyte.The results showed that DfMYB2 played a more and more important role in its growth and development.And the expression levels in rhizomes were significantly higher than those in roots and leaves.After abscisic acid(ABA)and PEG600 treatment,DfMYB2 showed a downward trend,followed by an upward trend.The expression of DfMYB2 was inhibited in a short time under drought stress,the strong induction of DfMYB2 expression by ABA indicated that it was possibly involved in abiotic stress responses in an ABA-dependent manner. 展开更多
关键词 transcription factor DfMYB2 abscisic acid(aba) drought stree
下载PDF
Characterization of wavy root 1,an agravitropism allele,reveals the functions of OsPIN2 in fine regulation of auxin transport and distribution and in ABA biosynthesis and response in rice(Oryza sativa L.) 被引量:1
8
作者 Wenqiang Li Minjuan Zhang +11 位作者 Lei Qiao Yunbo Chen Dapeng Zhang Xiuqing Jing Pengfei Gan Yangbin Huang Junru Gao Wenting Liu Chunhai Shi Hongchang Cui Haifeng Li Kunming Chen 《The Crop Journal》 SCIE CSCD 2022年第4期980-992,共13页
Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for... Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways. 展开更多
关键词 Auxin transporter Root development Wavy root GRAVITROPISM abscisic acid(aba) Drought tolerance
下载PDF
Development of abscisic acid receptor agonists/antagonists and their application prospect in agriculture:An overview
9
作者 Xianjun Tang Xiaobin Li Zhaohai Qin 《Advanced Agrochem》 2024年第1期9-25,共17页
Abscisic acid(ABA),a plant hormone,is crucial for regulating various physiological and developmental processes in plants,including adaptation to biotic and abiotic stresses.Recent advancements have significantly contr... Abscisic acid(ABA),a plant hormone,is crucial for regulating various physiological and developmental processes in plants,including adaptation to biotic and abiotic stresses.Recent advancements have significantly contributed to our understanding of ABA's biosynthetic pathway,transport,signaling pathway,and metabolism.To overcome the limitations of natural ABA,scientists have developed broad-spectrum and highly active agonists of ABA receptors.However,the practical application of these receptor agonists as agrochemicals still faces several challenges.On the other hand,some ABA antagonists have also been developed to differentiate the functional differences among various receptors more accurately.This can help design ABA agonists that can selectively activate specific physiological responses,thereby eliminating the undesired physiological effects induced by ABA.This paper aims to provide a comprehensive overview of the current ABA receptor agonists and antagonists to assist in developing novel ABA functional analogs with improved efficacy and simpler chemical structures that are suitable for agricultural applications. 展开更多
关键词 abscisic acid(aba) aba receptors Receptor agonists Receptor antagonists
下载PDF
Effects of Water Deficit and Increased Nitrogen Application in the Late Growth Stage on Physiological Characters of Anti-aging of Leaves in Different Hybrid Rice Varieties 被引量:1
10
作者 李木英 王竹青 +3 位作者 曾蕾 石庆华 潘晓华 谭雪明 《Agricultural Science & Technology》 CAS 2012年第11期2311-2322,共12页
[Objective] This study aimed to explore the effects of water and fertilizer regulation on the function of leaves in the filling stage. [Method] Six hybrid rice vari- eties including prematurely aged types and non-prem... [Objective] This study aimed to explore the effects of water and fertilizer regulation on the function of leaves in the filling stage. [Method] Six hybrid rice vari- eties including prematurely aged types and non-prematurely aged ones were selected as experimental materials. Limiting water treatment (with soil water potential of about -25 kpa) and increasing nitrogen treatment (additional 10% of granular nitrogen fertiliz- er in addition to limiting water treatment) were applied after heading to analyse the rates of aging and physiological responses of anti-aging in different hybrid rice vari- eties under water deficit and increased nitrogen conditions taking regular water and fertilizer as control. [Result] The results showed that water deficit accelerated the leaf senescence, and prematurely aged types-'Zhongyou838', 'Tianyou998' and 'Long- ping601 '-were more markedly affected by water deficit, of which the rates of chloro- phyll degradation were 6%-8% higher compared to that in another three hybrids. In- creasing nitrogen treatment raised chlorophyll content and slowed down its degrada- tion. Water deficit caused the increase of abscisic acid (ABA) content to obviously varying degrees in leaves of six hybried rice varieties. Responses of ABA content in six hybried rice varieties to increased nitrogen fertilizer were not consistent. Except in 'Zhongyou838', ABA content in the other five hybrids had varying degrees of in- crease. The responses of the activity of antioxidant enzymes in different hybried rice varieties were inconsistent. In response to increased nitrogen fertilizer in combination with water deficit, the activity of each antioxidant enzyme changed differently. Water deficit enhanced the accumulation of malondialdehyde (MDA) in leaves of each hybrid rice. The correlation analysis showed that chlorophyll content was extremely signifi- cantly positively correlated to the resistance of each antioxidant enzyme; SOD activity in leaves also positively related to ABA content. [Conclusion] The rate of leaf aging, physiological activity of anti-aging, and response to water deficit varied in different hy- bried rice varieties. The activity of antioxidant enzymes were not all induced to improve by ABA. SOD activity can be an indicator of resistance to stress. Increasing nitrogen ap- plication significantly postponed leave senescence in the late growth stage of rice. 展开更多
关键词 Hybrid rice Leaf senescence abscisic acidaba Antioxidant enzymes
下载PDF
Regulation of Water Deficit-Induced Abscisic Acid Accumulation by Apoplastic Ascorbic Acid in Maize Seedlings 被引量:4
11
作者 Jian-Fang HU Gui-Fen LI Zhi-Hui GAO Lin CHEN Hui-Bo REN Wen-Suo JIA 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第11期1335-1344,共10页
Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but ... Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 umol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 umol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e. approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that the inhibition of ABA accumulation by AA or GSH was not related to their ROS-scavenging ability. The results of the present study suggest that the redox status in the apoplastic compartment, as determined by AA and DHA, may play a vital role in the regulation of the signaling process for water deficit-induced ABA accumulation. 展开更多
关键词 abscisic acid aba ascorbic acid (AA) maize (Zea mays) reactive oxygen species waterdeficit.
原文传递
Drying temperature affects rice seed vigor via gibberellin,abscisic acid,and antioxidant enzyme metabolism 被引量:3
12
作者 Yu-tao HUANG Wei WU +2 位作者 Wen-xiong ZOU Hua-ping WU Dong-dong CAO 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2020年第10期796-810,共15页
Seed vigor is a key factor affecti ng seed quality.The mechanical drying process exerts a sign ificant in fluence on rice seed vigor.The initial moisture con tent(IMC)and drying temperature are considered the main fac... Seed vigor is a key factor affecti ng seed quality.The mechanical drying process exerts a sign ificant in fluence on rice seed vigor.The initial moisture con tent(IMC)and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying.This study aimed to determine the optimum drying temperature for rice seeds according to the IMC,and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor.Rice seeds with three different IMCs(20%,25%,and 30%)were dried to the target moisture content(14%)at four different drying temperatures.The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds.The upper limits of drying temperature for rice seeds with 20%,25%,and 30%IMCs were 45,42,and 38°C,respectively.The drying rate and seed temperature increased sign ificantly with in creasing drying temperature.The drying temperature,drying rate,and seed temperature showed extremely significant negative correlations with germination energy(GE),germination rate,germination index(Gl),and vigor index(VI).A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide(H2O2)and superoxide anions in the seeds,enhanced superoxide dismutase(SOD)and catalase(CAT)activity,and increased the abscisic acid(ABA)content.In the early stage of seed germination,the IMC and drying temperature regulated seed germination through the metabolism of H2O2,gibberellin acid(GA),ABA,and a-amylase.These results indicate that the metabolism of reactive oxygen species(ROS),antioxidant enzymes,GA,ABA,and a-amylase might be involved in the mediation of the effects of drying temperature on seed vigor.The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds. 展开更多
关键词 Drying temperature Rice Seed vigor Gibberellin acid(GA) abscisic acid(aba) Antioxidant enzyme
原文传递
High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon 被引量:2
13
作者 Wang Xiao-xiong Lu Long-dou +6 位作者 Hao Huai-qing Teng Nian-jun Chen Tong Guo Yi-ming Yang Ying-gen Guo Zhong-chen Lin Jin-xing 《Forestry Studies in China》 CAS 2007年第3期182-188,共7页
A high-efficiency somatic embryogenesis protocol of Japanese larch (Larix leptolepis Gordon) has been established in our investigation. Calli were induced from immature zygotic embryos of female cones ofL. leptolepi... A high-efficiency somatic embryogenesis protocol of Japanese larch (Larix leptolepis Gordon) has been established in our investigation. Calli were induced from immature zygotic embryos of female cones ofL. leptolepis and then subcultured regularly on to a modified Gupta and Durzan (DCR) basal medium for 5 years. Embryogenic tissues showed distinct morphological changes dur- ing somatic embryo development when they were transferred to a maturation medium supplemented with abscisic acid (ABA) com- pared with the morphology in a medium lacking ABA. Histological observations indicated that polyembryony was a characteristic feature during early embryogeny and somatic embryos at later stages showed normal histodifferentiation. In addition, histochemical analysis revealed that abundant starch granules and proteins accumulated in mature embryos, indicating that they played important roles in the development and regeneration of normal plantlets from somatic embryos on hormone-free germination media 展开更多
关键词 Larix leptolepis Gordon abscisic acid aba HISTOCHEMISTRY morphohistology POLYEMBRYONY
下载PDF
Abscisic acid-dependent PMT1 expression regulates salt tolerance by alleviating abscisic acid-mediated reactive oxygen species production in Arabidopsis 被引量:1
14
作者 Qi Yu He Jian Feng Jin +4 位作者 He Qiang Lou Feng Feng Dang Ji Ming Xu Shao Jian Zheng Jian Li Yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第9期1803-1820,共18页
Phosphocholine(PCho)is an intermediate metabolite of nonplastid plant membranes that is essential for salt tolerance.However,how PCho metabolism modulates response to salt stress remains unknown.Here,we characterize t... Phosphocholine(PCho)is an intermediate metabolite of nonplastid plant membranes that is essential for salt tolerance.However,how PCho metabolism modulates response to salt stress remains unknown.Here,we characterize the role of phosphoethanolamine N-methyltransferase 1(PMT1)in salt stress tolerance in Arabidopsis thaliana using a T-DNA insertional mutant,geneediting alleles,and complemented lines.The pmt1 mutants showed a severe inhibition of root elongation when exposed to salt stress,but exogenous ChoCl or lecithin rescued this defect.pmt1 also displayed altered glycerolipid metabolism under salt stress,suggesting that glycerolipids contribute to salt tolerance.Moreover,pmt1 mutants exhibited altered reactive oxygen species(ROS)accumulation and distribution,reduced cell division activity,and disturbed auxin distribution in the primary root compared with wild-type seedlings.We show that PMT1 expression is induced by salt stress and relies on the abscisic acid(ABA)signaling pathway,as this induction was abolished in the aba2-1 and pyl112458 mutants.However,ABA aggravated the salt sensitivity of the pmt1 mutants by perturbing ROS distribution in the root tip.Taken together,we propose that PMT1 is an important phosphoethanolamine N-methyltransferase participating in root development of primary root elongation under salt stress conditions by balancing ROS production and distribution through ABA signaling. 展开更多
关键词 abscisic acid(aba) oxidative stress plasma membrane phosphoethanolamine N-methyltransferase phospholipid metabolism salt stress
原文传递
High efficient removal of HCN over porous CuO/CeO2 micro-nano spheres at lower temperature range 被引量:1
15
作者 Zhihao Yi Jie Sun +4 位作者 Jigang Li Tian Zhou Shouping Wei Hongjia Xie Yulin Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期155-164,共10页
The porous CeO2 flowerlike micro-nano spheres based materials were prepared to remove HCN effectively at lower temperature range.The CeO2 and a serious of porous flowerlike ceria based materials loaded with metal spec... The porous CeO2 flowerlike micro-nano spheres based materials were prepared to remove HCN effectively at lower temperature range.The CeO2 and a serious of porous flowerlike ceria based materials loaded with metal species including Cu,Ag,Ni,Co and Fe were synthesized by hydrothermal method and precipitation method respectively.The physicochemical properties were probed by means of XRD,H2-TPR,BET,SEM and XPS.The removal ability for 130 mg·m﹣3 HCN over CuO/CeO2 showed the highest activity,the breakthrough time of which was more than 70 min at the condition of 30℃,120,000 h-1 and b 5%(volume)H2O,owe to a higher relative atomic ratio of oxygen vacancies and Oβ,the stronger interaction between metal particle and support,the optimum redox properties.The reaction mechanism was speculated by detecting the reaction products selectivity at different reaction temperature.It was shown that the reaction system for removal of HCN over CuO/CeO2 catalytic material involved chemisorption,catalytic hydrolysis,catalytic oxidation as well as NH3-SCR reactions. 展开更多
关键词 Rice(Oryza sativa L.) Saline-alkaline stress abscisic acid(aba) Osaba8ox1-kd Endogenous aba levels
下载PDF
Expression Patterns of ABA and GA Metabolism Genes and Hormone Levels during Rice Seed Development and Imbibition: A Comparison of Dormant and Non-Dormant Rice Cultivars 被引量:10
16
作者 Yang Liu Jun Fang +5 位作者 Fan Xu Jinfang Chu Cunyu Yan Michael R.Schlappi Youping Wang Chengcai Chu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2014年第6期327-338,共12页
Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA)... Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZHll; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZHll. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. 展开更多
关键词 Seed development Seed imbibition Gene expression abscisic acid aba Gibberellin (GA) aba/GA ratio Rice
原文传递
A cotton mitogen-activated protein kinase (GhMPK6) is involved in ABA-induced CAT1 expression and H_2O_2 production 被引量:3
17
作者 Juan Luo Li-Li Zhao Si-Ying Gong Xiang Sun Peng Li Li-Xia Qin Ying Zhou Wen-Liang Xu Xue-Bao Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2011年第11期557-565,共9页
The mitogen-activated protein kinase (MAPK) cascade is one of the a pivotal role in the regulation of stress and developmental signals in plants. major and evolutionally conserved signaling pathways and plays Here, ... The mitogen-activated protein kinase (MAPK) cascade is one of the a pivotal role in the regulation of stress and developmental signals in plants. major and evolutionally conserved signaling pathways and plays Here, we identified one gene, GhMPK6, encoding an MAPK protein in cotton. GFP fluorescence assay demonstrated that GhMAPK6 is a cytoplasm localized protein. Quantitative RT-PCR analysis revealed that mRNA accumulation of GhMPK6 was significantly promoted by abscisic acid (ABA). Overexpression of GhMPK6 gene in the T-DNA insertion mutant atmkkl (SALK_015914) conferred a wild-type phenotype to the transgenic plants in response to ABA. Under ABA treatment, cotyledon greening/expansion in GhMPK6 transgenic lines and wild type was significantly inhibited, whereas the atmkkl mutant showed a relatively high cotyledon greening/expansion ratio. Furthermore, CAT1 expression and H2O2 levels in leaves of GhMPK6 transgenic lines and wild type were remarkably higher than those of atmkkl mutant with ABA treatment. Collectively, our results suggested that GhMPK6 may play an important role in ABA-induced CAT1 expression and H2O2 production. 展开更多
关键词 Cotton (Gossypium hirsutum) Mitogen-activated protein kinase (MAPK) Hydrogen peroxide (H2O2) abscisic acid aba HYPERSENSITIVITY
原文传递
Protein Tyrosine Phosphatases Mediate the Signaling Pathway of Stomatal Closure of Vicia faba L. 被引量:2
18
作者 Wu-LiangSHI XinLIU +1 位作者 Wen-SuoJIA Shu-QiuZHANG 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第3期319-326,共8页
: The regulation of stomatal movement is one of the most important signaling networks in plants. The H+-ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some c... : The regulation of stomatal movement is one of the most important signaling networks in plants. The H+-ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H+-ATPase inhibitor, vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Vicia faba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H+-ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases), we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase. As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V. faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement. 展开更多
关键词 abscisic acid (aba) H+-ATPase protein tyrosine phosphatases stomatal movement Vicia faba L
原文传递
Apoplastic barriers of Populus×canescens roots in reaction to different cultivation conditions and abiotic stress treatments
19
作者 Paul Grunhofer Ines Heimerich +2 位作者 Lena Herzig Svenja Pohl Lukas Schreiber 《Stress Biology》 2023年第1期269-282,共14页
Populus is an important tree genus frequently cultivated for economical purposes.However,the high sensitivity of poplars towards water deficit,drought,and salt accumulation significantly affects plant productivity and... Populus is an important tree genus frequently cultivated for economical purposes.However,the high sensitivity of poplars towards water deficit,drought,and salt accumulation significantly affects plant productivity and limits biomass yield.Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers(Casparian bands and suberin lamellae)in roots of different monocotyledonous crop species.Thus,this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar(Populus×canescens)react to a set of selected cultivation conditions(hydroponics,aeroponics,or soil)and abiotic stress treatments(abscisic acid,oxygen deficiency)because a differing stress response could potentially help in explaining the observed higher stress susceptibility.The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species.Overall,dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments.The genetic optimization(e.g.,overexpression of biosynthesis key genes)of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future. 展开更多
关键词 HYDROPONICS AEROPONICS Soil abscisic acid(aba) Oxygen deficiency Poplar root suberin
原文传递
Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis 被引量:67
20
作者 Yanjuan Jiang Gang Liang Diqiu Yu 《Molecular Plant》 SCIE CAS CSCD 2012年第6期1375-1388,共14页
Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide. However, the mechanism underlying drought tolerance in plants is unclear. WRKY transcription factor... Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide. However, the mechanism underlying drought tolerance in plants is unclear. WRKY transcription factors are known to function in adaptation to abiotic stresses. By screening a pool of WRKY-associated T-DNA insertion mutants, we isolated a gain-of-function mutant, acquired drought tolerance (adt), showing improved drought tolerance. Under drought stress conditions, adt accumulated higher levels of ABA than wild-type plants. Stomatal aperture analysis indi- cated that adt was more sensitive to ABA than wild-type plants. Molecular genetic analysis revealed that a T-DNA inser- tion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein. Constitutive expression of WRKY57 also conferred similar drought tolerance. Consistently with the high ABA content and enhanced drought tol- erance, three stress-responsive genes (RD29A, NCED3, and ABA3) were up-regulated in adt. ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences. In addition, during ABA treatment, seed germination and early seedling growth of adt were inhibited, whereas, under high osmotic conditions, adt showed a higher seed germination frequency. In summary, our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels. Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches. 展开更多
关键词 abiotic stress drought tolerance abscisic acid aba WRKY transcription factor acquired drought tolerance (adt).
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部