期刊文献+
共找到16,961篇文章
< 1 2 250 >
每页显示 20 50 100
Unconventional photon blockade in the two-photon Jaynes–Cummings model with two-frequency cavity drivings and atom driving
1
作者 刘欣 田梦雨 +1 位作者 崔晓宁 张馨鹤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期164-168,共5页
In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mod... In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source. 展开更多
关键词 photon blockade single photon source quantum interference
下载PDF
GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits
2
作者 Tingting Shi Yuanbin Fan +3 位作者 Zhengyu Yan Lai Zhou Yang Ji Zhiliang Yuan 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期71-75,共5页
We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the ... We demonstrate the photon-number resolution(PNR)capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode(APD)that is equipped with a simple,low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response.Through discriminating the avalanche current amplitude,we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%.The PNR capability is limited by the avalanche current saturation,and can be increased to five photons at a lower detection efficiency of 34%.The PNR capability,combined with high efficiency and low noise,will find applications in quantum information processing technique based on photonic qubits. 展开更多
关键词 single photon avalanche diode(APD) photon number resolution(PNR) detection efficiency
下载PDF
Photon Structure and Wave Function from the Vector Potential Quantization
3
作者 Constantin Meis 《Journal of Modern Physics》 CAS 2023年第3期311-329,共19页
A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behave... A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy  and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized. 展开更多
关键词 photonS photon Wave Function Vector Potential Quantization photon Electric and Magnetic Fields photon Structure Wave-Corpuscle Representation photon “Energy-Vector Potential” Equation
下载PDF
Acousto-optic scanning multi-photon lithography with high printing rate
4
作者 Minghui Hong 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期1-3,共3页
As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano ... As a manufacturing method that is focused on end-users,3D printing has gained a lot of attention in recent years due to its unique advantages in fabricating complex three-dimensional structures.Various new micro-nano 3D printing methods have been developed to meet the demand for high-precision and high-yield manufacturing1-9.Among them,multi-photon-photon lithography(MPL) is a promising 3D nanofabrication technology due to its capability of true 3D digital processing and nanoscale processing resolution beyond the diffraction limit.It has been widely used to fabricate microoptics10,11,photonic crystals12,microfluidics13,meta-surfaces14,and mechanical metamaterials15. 展开更多
关键词 photon Acous SCANNING
下载PDF
Photostability of colloidal single photon emitter in near-infrared regime at room temperature
5
作者 靳思玥 许兴胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期515-520,共6页
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum... The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model. 展开更多
关键词 colloidal quantum dots single photon source BLINKING
下载PDF
High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect
6
作者 李大星 刘凯柱 +3 位作者 余春龙 张括 刘跃钦 冯帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期453-458,共6页
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod... An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2. 展开更多
关键词 photonic crystal all-optical diode Fano cavity unidirectional transmission
下载PDF
Engineering the spectra of photon triplets generated from micro/nanofiber
7
作者 瞿川 郭东琴 +4 位作者 李笑笑 刘振旗 赵义 张胜海 卫正统 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期408-414,共7页
Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio... Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing. 展开更多
关键词 photon triplets micro/nanofiber spectrum engineering
下载PDF
Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
8
作者 Y.Lahlou B.Maroufi M.Daoud 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期204-211,共8页
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to... Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping. 展开更多
关键词 quantum correlations ENTANGLEMENT Gaussian interferometric power logarithmic negativity optomechanics photon hopping
下载PDF
Progress and realization platforms of dynamic topological photonics
9
作者 闫秋辰 马睿 +1 位作者 胡小永 龚旗煌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期75-87,共13页
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee... Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects. 展开更多
关键词 dynamic topological photonics optical waveguide array topological optical lattice ultrafast spectroscopy
下载PDF
Enhancing Precision in Radiotherapy Delivery: Validating Monte Carlo Simulation Models for 6 MV Elekta Synergy Agility LINAC Photon Beam Using Two Models of the GAMOS Code
10
作者 Nogaye Ndiaye Oumar Ndiaye +7 位作者 Papa Macoumba Faye Kodjo Joël Fabrice N’Guessan Djicknack Dione Khady Sy Moussa Hamady Sy Jean Paul Latyr Faye Alassane Traoré Ababacar Sadikhe Ndao 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期146-163,共18页
The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits ... The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature. 展开更多
关键词 GAMOS Monte Carlo LINAC RADIOTHERAPY Dose Distribution Phase Space Gamma Index 6 MV photon Beam
下载PDF
Single Photon Detection Technology in Underwater Wireless Optical Communication:Modulation Modes and Error Correction Coding Analysis
11
作者 GAI Lei LI Wendong WANG Guoyu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期405-414,共10页
This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding type... This study explores the application of single photon detection(SPD)technology in underwater wireless optical communication(UWOC)and analyzes the influence of different modulation modes and error correction coding types on communication performance.The study investigates the impact of on-off keying(OOK)and 2-pulse-position modulation(2-PPM)on the bit error rate(BER)in single-channel intensity and polarization multiplexing.Furthermore,it compares the error correction performance of low-density parity check(LDPC)and Reed-Solomon(RS)codes across different error correction coding types.The effects of unscattered photon ratio and depolarization ratio on BER are also verified.Finally,a UWOC system based on SPD is constructed,achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction. 展开更多
关键词 error correction coding modulation mode single photon detection underwater communication wireless optical communication
下载PDF
Countermeasure against blinding attack for single-photon detectors in quantum key distribution
12
作者 Lianjun Jiang Dongdong Li +12 位作者 Yuqiang Fang Meisheng Zhao Ming Liu Zhilin Xie Yukang Zhao Yanlin Tang Wei Jiang Houlin Fang Rui Ma Lei Cheng Weifeng Yang Songtao Han Shibiao Tang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期76-81,共6页
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin... Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security. 展开更多
关键词 quantum key distribution single photon detector blinding attack pulsed blinding attack COUNTERMEASURE quan-tum communication
下载PDF
Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
13
作者 沈云峰 许孝芳 +2 位作者 孙铭 周文佶 常雅箐 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期480-491,共12页
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru... We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system. 展开更多
关键词 valley photonic crystal topological edge states topological corner states higher-order topological insulators topological phase transition
下载PDF
Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes
14
作者 Jingtong Bin Kerui Feng +4 位作者 Shang Ma Ke Liu Yong Cheng Jing Chen Qifa Liu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期63-70,共8页
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin... A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio. 展开更多
关键词 photonic crystal nanobeam cavity Mixed diamond–circular holes Slots and anti-slots FDTD simulation Quality factor Mode volume
下载PDF
Low-loss chip-scale programmable silicon photonic processor 被引量:1
15
作者 Yiwei Xie Shihan Hong +4 位作者 Hao Yan Changping Zhang Long Zhang Leimeng Zhuang Daoxin Dai 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期25-41,共17页
Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon ph... Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility,and thus makes it possible to develop large-scale programmable optical signal processors.The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors.In this paper,we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches.The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers(MZCs),four Ge/Si photodetectors,four channels of thermally-tunable optical delaylines.Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step.Particularly,these waveguide spirals used here are designed to be as wide as 2μm,enabling an ultralow propagation loss of 0.28 dB/cm.Meanwhile,these MZCs and MZSs are designed with 2-μm-wide arm waveguides,and thus the random phase errors in the MZC/MZS arms are negligible,in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly.Finally,this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities,including tunable time-delay,microwave photonic beamforming,arbitrary optical signal filtering,and arbitrary waveform generation. 展开更多
关键词 silicon photonics PROGRAMMABLE photonic integrated circuit WAVEGUIDE delay lines Mach-Zehnder interferometer
下载PDF
Photonic integrated neuro-synaptic core for convolutional spiking neural network 被引量:1
16
作者 Shuiying Xiang Yuechun Shi +14 位作者 Yahui Zhang Xingxing Guo Ling Zheng Yanan Han Yuna Zhang Ziwei Song Dianzhuang Zheng Tao Zhang Hailing Wang Xiaojun Zhu Xiangfei Chen Min Qiu Yichen Shen Wanhua Zheng Yue Hao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第11期29-42,共14页
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions... Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip. 展开更多
关键词 neuromorphic computation photonic spiking neuron photonic integrated DFB-SA array convolutional spiking neural network
下载PDF
High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
17
作者 王晓蓉 费宏明 +6 位作者 林瀚 武敏 康丽娟 张明达 刘欣 杨毅彪 肖连团 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期392-398,共7页
For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been dem... For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing. 展开更多
关键词 topological photonics topological edge state valley photonic crystal all-optical logic gate
下载PDF
Fundamentals and applications of photonic waveguides with bound states in the continuum
18
作者 Zejie Yu He Gao +4 位作者 Yi Wang Yue Yu Hon Ki Tsang Xiankai Sun Daoxin Dai 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期11-24,共14页
Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities ... Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities and performance of PICs.Recently,the emerging waveguides with bound states in the continuum(BICs)have opened new opportunities for PICs because of their special properties in resonance and radiation.Here,we review the recent progress of PICs composed of waveguides with BICs.First,fundamentals including background physics and design rules of a BIC-based waveguide will be introduced.Next,two types of BIC-based waveguide structures,including shallowly etched dielectric and hybrid waveguides,will be presented.Lastly,the challenges and opportunities of PICs with BICs will be discussed. 展开更多
关键词 photonic waveguide bound states in the continuum integrated photonics
下载PDF
A 3–5μm broadband YBCO high-temperature superconducting photonic crystal
19
作者 刘刚 李远航 +4 位作者 贾宝楠 高永潘 韩利红 芦鹏飞 宋海智 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期291-298,共8页
Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural p... Photonic crystal structures have excellent optical properties,so they are widely studied in conventional optical materials.Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection.Considering that superconductors have completely different properties from conventional optical materials,we study the energy level diagram and mid-infrared 3μm–5μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method.The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states.At the same fill factor,the circular crystal column superconducting structure has a larger band gap width than the others structures.For lattice structures,the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature.Our research has guiding significance for the design of new material photonic crystals,photon modulation and detection. 展开更多
关键词 high-temperature superconducting MID-INFRARED photonic crystal single-photon detection
下载PDF
A review:Photonics devices,architectures,and algorithms for optical neural computing 被引量:9
20
作者 Shuiying Xiang Yanan Han +15 位作者 Ziwei Song Xingxing Guo Yahui Zhang Zhenxing Ren Suhong Wang Yuanting Ma Weiwen Zou Bowen Ma Shaofu Xu Jianji Dong Hailong Zhou Quansheng Ren Tao Deng Yan Liu Genquan Han Yue Hao 《Journal of Semiconductors》 EI CAS CSCD 2021年第2期64-79,共16页
The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era.Photonics neuromorphic computing has attracted lots of attention due to t... The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era.Photonics neuromorphic computing has attracted lots of attention due to the fascinating advantages such as high speed,wide bandwidth,and massive parallelism.Here,we offer a review on the optical neural computing in our research groups at the device and system levels.The photonics neuron and photonics synapse plasticity are presented.In addition,we introduce several optical neural computing architectures and algorithms including photonic spiking neural network,photonic convolutional neural network,photonic matrix computation,photonic reservoir computing,and photonic reinforcement learning.Finally,we summarize the major challenges faced by photonic neuromorphic computing,and propose promising solutions and perspectives. 展开更多
关键词 photonics neuron photonic STDP photonic spiking neural network optical reservoir computing optical convolutional neural network neuromorphic photonics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部