This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the se...This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.展开更多
There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we...There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we first introduce the definitions of the abhstract selection and evolution operators, and that of the abstract evolutionary algorithm, which describes the evolution as an abstract stochastic process composed of these two fundamental abstract operators. In particular, a kind of abstract evolutionary algorithms based on a special selection mechansim is discussed. According to the sorting for the state space, the properties of the single step transition matrix for the algorithm are anaylzed. In the end, we prove that the limit probability distribution of the Markov chains exists. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.
基金Supported by the National Science Foundation of China(60133010)Supported by the Science Foundation of Henan Province(2000110019)
文摘There has been a growing interest in mathematical models to character the evolutionary algorithms. The best-known one of such models is the axiomatic model colled the abstract evolutionary algorithm. In this paper, we first introduce the definitions of the abhstract selection and evolution operators, and that of the abstract evolutionary algorithm, which describes the evolution as an abstract stochastic process composed of these two fundamental abstract operators. In particular, a kind of abstract evolutionary algorithms based on a special selection mechansim is discussed. According to the sorting for the state space, the properties of the single step transition matrix for the algorithm are anaylzed. In the end, we prove that the limit probability distribution of the Markov chains exists. The present work provides a big step toward the establishment of a unified theory of evolutionary computation.