Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,a...Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.展开更多
In this study, the theory of ore formation on the Earth and the Moon was developed. It is shown that ore deposits on the Earth and the Moon were mainly formed simultaneously with the separation of the Moon from the pr...In this study, the theory of ore formation on the Earth and the Moon was developed. It is shown that ore deposits on the Earth and the Moon were mainly formed simultaneously with the separation of the Moon from the protoplanet and the formation of the oldest continents. The formation of terrestrial ores occurred as a result of the release of intermediate and heavy chemical elements from the deep layers of the protoplanet and the subsequent process of adhesion to old terrestrial geological faults. The time of terrestrial and lunar ores formations corresponds to the boundary between the Tonian and Cryogenian Periods (~720 Ma). Lunar ore formation processes are different on the near and far sides. The farside of the Moon is a single piece of the protoplanetary lithosphere, so ores there could be formed mainly due to the overflow of igneous rocks over the edge of the lunar continent. On the nearside, due to the rapid cooling, ores were formed in the area of navel-string during the drip-liquid separation of the Moon from the Earth. Due to the fact that the Moon separated at the first stage, the amount of water and methane on it is limited. In periods after the Cryogenian, volcanic, lava and sedimentary rocks on Earth could be enriched with intermediate elements due to the disruption of vertical stratification during galactic storms. To analyze this, a comparison of terrestrial volcanic and lunar pseudo-volcanic activity was carried out in the work.展开更多
The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages ...The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages and can be divided into four types based on textures and mineral assemblages.Pyrite from the adjacent Shanshulin deposit(Py-SSL)is also used for comparison.Py1 shows framboid texture with grain diameter up to 1 mm and was commonly replaced by sphalerite.Py2 is characterized by overgrowth texture and displays inner oscillatory zoning.Py2 is associated with abundant sphalerite and galena.Py3 shows replacement relics textures where galena fills the fractures of pyrite.Py4 is a euhedral to subhedral crystal disseminated in dolomite and is characterized by deformation and fragmentation textures.Minor sphalerite and galena are associated with Py4.Py-SSL is subhedral and disseminated in dolomite,similar to Py4.Py1 was formed by a diagenetic or sedimentary process,whereas Py2 and Py3 were formed by multiple stages of ore fluids.Py4 and Py-SSL were formed at the carbonate-sulfide stage,but Py4 suffered from deformation after its formation.Py1,Py2,and Py3 are characterized by relative enrichment of Sb,Cu,and As,in contrast to Py4 and Py-SSL with higher Cr,W,Ge,Sn,Tl,Ni,and Ga contents.However,critical metals such as Ge,Ga,and In in pyrite are generally lower than10 ppm,which are not economically important.The trace element variation in Tianqiao pyrite with paragenesis results from fluid evolution in the Pb–Zn ore system and competition with co-precipitating minerals.Diagenetic and ore-forming hydrothermal fluids are responsible for the formation of different types of pyrite.Ore-related pyrite from the Tianqiao and Shanshulin deposits has Co and Ni distribution features similar to pyrite from sedimentary pyrite and submarine hydrothermal vents,different from those in volcanogenic massive sulfide,iron oxide-copper–gold,and porphyry Cu deposits,indicating their derivation of relatively low-temperature(<~250°C)hydrothermal fluids,similar to basin brines or seawater.,via fluid-rock interaction.This conclusion is also supported by the sulfur isotope composition of sulfides which are 13.0–13.5%,and 15.6–20.5%for Tianqiao and Shanshulin deposits,respectively.展开更多
A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and ge...A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.展开更多
Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007,...Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.展开更多
This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil...This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil formation,material transport and environmental pollution.Results show that the effect of soil-forming processes on the ratios of closely related elements varied with different elements,and became greater in the sequence of Ce/La <V/Cr≈Ni/Co<Zn/Cu≈Zn/Pb<Zn/Cd<Mn/Cr<Ba/Sr.The magnitude of the variation in the ratios of closely related elements depended on the chemical properties of the elements themselves,on the one hand,and the parent material and climatic conditions on the other.The ratio of Ba/Sr showed a distinct zonality,decreasing gradually in the sequence:cool temperate zone acid soils>grassland soils>desert soils and increasing gradually from the semi-arid subhumid zone soils>the temperate zone neutral soils>the north subtropic zone soils>tropical and subtropical acid soils.展开更多
The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting ...The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting thin sections,analysis of cathodoluminescence,X-ray diffraction,microscopic sampling of trace elements,laser samplingδ18O andδ13C,and fluid inclusion homogenization temperature were conducted.The results show that the dolomite is the product of recrystallization of micritic to crystal powder dolomite rather than the product of dolomitization of grain limestone.In the spherical grains are residual gypsum and halite pseudo crystals identical with those in the host micritic dolomite.The spherical particles of dolomite has similar trace elements andδ18O andδ13C characteristics to micritic dolomite.Furthermore,Mn/Sr ratio of the fine-medium dolomite between the dolomite grains is about 5-8,while Mn/Sr ratios of calcite in limestone,micritic dolostone in micritic dolomite,and micritic and powdery dolomite are about 0-2,indicating that the dolomite experienced strong diagenesis.Homogenization temperature of inclusions of fine-medium dolomite is about 148.19°C,higher than that of inclusions in micritic to crystal powder dolomite(about 122.60°C),which also supports the conclusion that the grain dolomite experienced burial diagenesis and negative shift ofδ18O andδ13C.Theδ18O,δ13C values of micritic to crystal powder dolomite match with the negative migration,but those of calcite in limestone don’t.It is of great significance to elucidate the genesis of"dolomite recrystallization"for the prediction of such dolomite reservoirs.展开更多
China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.00...China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.005×10^17 and 1.146×10^17 metric tons in mass,respectively.The mass ratio of the upper continental crust to the lower one is 1.8:1.The element abundances were calculated for the CCC,CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data.The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%.REE characteristics,the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.展开更多
In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trac...In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.展开更多
A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation sh...A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation ships in the primary magma obey both the law of power function for fractional crystallization and the law of fractional linear function for Nullibrium partial melting. Based on this double nature of the primary magma, the authors advanced a principle to restore the primary magma composition from that of an igneous rock series with petrogenesis of fractional crystalization and put forward an approach of estimating the element abundance of the primary magma, exemplified by the rare-earth elements in the Andes volcanic rock series.展开更多
To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurre...To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurrence modes, and geochemical origin of valuable trace elements in coal were studied by using X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), polarizing microscope, X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS). The results reveal that Linchang coal is ultra-low calorific value lignite with high ash, medium sulfur, medium-high moisture and medium volatilization. The minerals are mainly composed of illite, kaolinite, quartz, pyrite, siderite, bassanite, anhydrite and magnesium-containing calcite. Compared with average values for world low-rank coals, the contents of valuable trace elements in Linchang coal are higher on the whole, which is characterized by the high enrichment o<span>f U, the enrichment of elements Li, V and Ag, and the slight enrichment of</span> elements Be, Ga and Se. Lithium, V, Ga and Ag mainly occur in clay minerals including illite and kaolinite, and part of V is related to organic matter. Th<span>e carriers of Be in coal are clay minerals and organic matter. Selenium is </span>mainly combined with organic matter and a small amount exists in pyrite. Uranium is primarily organically bound in coal. The enrichment of valuable trace elements in Linchang coal is influenced by the sedimentary source, coal<span>-forming environment, underground circulating water and geological structure. The sedimentary environment of the coal seam is an acid-reduced terrestrial peat swamp, and the source is Triassic sedimentary rocks weathered f</span>rom feldspathic volcanic rocks around Baise basin.展开更多
The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XR...The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XRS) to investigate the elemental abundances of the lunar surface. During CE-2's life span around the Moon, the XRS experienced several events of solar flare. The X-ray solar monitor onboard recorded the spectra of solar X-rays at the same time. In this paper, we introduced the XRS instrument and data product. We analyzed the characteristics of the XRS data. Using the data obtained during an M solar flare event which had occurred on Feb. 16, 2011, we derived the elemental abundances of Mg, Al, Si, Ca and Fe of the lunar surface in the Oceanus Procellarum. Finally, we discussed the factors that influence the accuracy of the inversion.展开更多
This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sedim...This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials. Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes, evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglacial sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the proglacial foreland of modern glacier.展开更多
Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the bas...Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.展开更多
In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sedim...In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.展开更多
The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and elemen...The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and element abundance values and discusses their regional abundance characteristics from metallogenic elernents, heat source elements and lanthanide elements. The conclusion is that their geochemical backgrounds are quite different from each other.展开更多
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at...The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.展开更多
In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using...In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition, a group of analytical solutions for the network equation are obtained. With the analytical solutions, a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
文摘Through a detailed study of the abundances and spatial-temporal distribution patterns of Te,Bi,As,Se,Cu,Pb,Zn,Au,and Ag in the rock types of different geological epochs in the Dashuigou independent tellurium deposit,and in combination with other research findings of previous researchers in this area,the authors conclude as follows:Abundances of the main ore-forming elements Te,Bi,As,Se,Au,and Ag are not high in the regional geological background,generally lower or close to their respective crustal Clark values,but almost all altered country rocks contain high levels of ore-forming elements.This indicates that the deposit’s ore-forming elements do not come from the country rocks.This also indicates that the geological thermal events that cause alteration and mineralization originate from depths and may be related to mantle plumes.Considering the distribution pattern of these ore-forming elements in the ore bodies’hanging wall and footwall,the metallogenic mechanism may be as follows:Mineralization is not achieved through lateral secretion in the horizontal or near horizontal direction,but rather through the upward movement and emplacement of deep ore-forming elements driven by geological processes such as mantle plumes.In addition,the migration of deep ore-forming elements is not achieved through dispersed infiltration between overlying rock particles,but through non widespread concentrated penetrating channels.This type of channel is likely to be the expansion structures where faults from different directions intersect,or where linear faults intersect with circular structures.
文摘In this study, the theory of ore formation on the Earth and the Moon was developed. It is shown that ore deposits on the Earth and the Moon were mainly formed simultaneously with the separation of the Moon from the protoplanet and the formation of the oldest continents. The formation of terrestrial ores occurred as a result of the release of intermediate and heavy chemical elements from the deep layers of the protoplanet and the subsequent process of adhesion to old terrestrial geological faults. The time of terrestrial and lunar ores formations corresponds to the boundary between the Tonian and Cryogenian Periods (~720 Ma). Lunar ore formation processes are different on the near and far sides. The farside of the Moon is a single piece of the protoplanetary lithosphere, so ores there could be formed mainly due to the overflow of igneous rocks over the edge of the lunar continent. On the nearside, due to the rapid cooling, ores were formed in the area of navel-string during the drip-liquid separation of the Moon from the Earth. Due to the fact that the Moon separated at the first stage, the amount of water and methane on it is limited. In periods after the Cryogenian, volcanic, lava and sedimentary rocks on Earth could be enriched with intermediate elements due to the disruption of vertical stratification during galactic storms. To analyze this, a comparison of terrestrial volcanic and lunar pseudo-volcanic activity was carried out in the work.
基金Guizhou Science Foundation,20171197,Yumiao MengCAS Hundred Talents Program,Y9CJ034000,Xiao-Wen Huang+1 种基金National Natural Science Foundation of China,42073043,Yumiao Meng,41673050,Xiao-Wen HuangScience and Technique Foundation of Water Resources Department of Jiangxi Province,202123YBKT10,Chun-Xia Xu。
文摘The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages and can be divided into four types based on textures and mineral assemblages.Pyrite from the adjacent Shanshulin deposit(Py-SSL)is also used for comparison.Py1 shows framboid texture with grain diameter up to 1 mm and was commonly replaced by sphalerite.Py2 is characterized by overgrowth texture and displays inner oscillatory zoning.Py2 is associated with abundant sphalerite and galena.Py3 shows replacement relics textures where galena fills the fractures of pyrite.Py4 is a euhedral to subhedral crystal disseminated in dolomite and is characterized by deformation and fragmentation textures.Minor sphalerite and galena are associated with Py4.Py-SSL is subhedral and disseminated in dolomite,similar to Py4.Py1 was formed by a diagenetic or sedimentary process,whereas Py2 and Py3 were formed by multiple stages of ore fluids.Py4 and Py-SSL were formed at the carbonate-sulfide stage,but Py4 suffered from deformation after its formation.Py1,Py2,and Py3 are characterized by relative enrichment of Sb,Cu,and As,in contrast to Py4 and Py-SSL with higher Cr,W,Ge,Sn,Tl,Ni,and Ga contents.However,critical metals such as Ge,Ga,and In in pyrite are generally lower than10 ppm,which are not economically important.The trace element variation in Tianqiao pyrite with paragenesis results from fluid evolution in the Pb–Zn ore system and competition with co-precipitating minerals.Diagenetic and ore-forming hydrothermal fluids are responsible for the formation of different types of pyrite.Ore-related pyrite from the Tianqiao and Shanshulin deposits has Co and Ni distribution features similar to pyrite from sedimentary pyrite and submarine hydrothermal vents,different from those in volcanogenic massive sulfide,iron oxide-copper–gold,and porphyry Cu deposits,indicating their derivation of relatively low-temperature(<~250°C)hydrothermal fluids,similar to basin brines or seawater.,via fluid-rock interaction.This conclusion is also supported by the sulfur isotope composition of sulfides which are 13.0–13.5%,and 15.6–20.5%for Tianqiao and Shanshulin deposits,respectively.
文摘A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.
基金supported by the National High Technology Research and Development Program of China(Nos2008AA12A212 and 2010AA122202)the National Natural Science Foundation of China(Nos41040031 and 40904024)
文摘Gamma-ray spectrometer (GRS) is one of the main payloads on the Chang'E-1 (CE-1) lunar probe, mainly aimed to detect the elemental abundances and distributions on the lunar surface. At 03:58 on 28 November 2007, it performed the first observation of the lunar gamma rays. As of 24 October 2008, 2105 h of effective gamma rays spectra had been acquired by CE-1 GRS, which covers the whole surface of the moon. This paper mainly describes the data processing procedures and methods of deriving the elemental abundances by using the CE-1 GRS time series corrected spectra: first, to bin data into pixels for mapping; then, to perform a background deduction of the cumulative spectra and obtain a peak area of the elements; and finally, to use the elemental abundances inversion model to produce the elemental abundances. Based on these processing methods, the global abundance maps of U, K, and Th at a 5°×5° equal-area pixel are acquired by CE-1 GRS data. The paper gives a preliminary analysis of the uncertainties of the elemental abundances.
文摘This paper has investigated the ratios of closely related elements such as Mn,Cr,V,Ni,Co,Cu,Pb,Cd,Ba,Sr,La and Ce in the major soils of China,and the factors affecting them,and explored their use as indicators in soil formation,material transport and environmental pollution.Results show that the effect of soil-forming processes on the ratios of closely related elements varied with different elements,and became greater in the sequence of Ce/La <V/Cr≈Ni/Co<Zn/Cu≈Zn/Pb<Zn/Cd<Mn/Cr<Ba/Sr.The magnitude of the variation in the ratios of closely related elements depended on the chemical properties of the elements themselves,on the one hand,and the parent material and climatic conditions on the other.The ratio of Ba/Sr showed a distinct zonality,decreasing gradually in the sequence:cool temperate zone acid soils>grassland soils>desert soils and increasing gradually from the semi-arid subhumid zone soils>the temperate zone neutral soils>the north subtropic zone soils>tropical and subtropical acid soils.
基金Supported by the China National Science and Technology Major Project(2016ZX05050).
文摘The origin of grain dolomite in M55 Member of Ordovician Majiagou Formation in northwestern Ordos Basin was studied by geochemical and petrological tests on core samples.Observation of cores,thin sections and casting thin sections,analysis of cathodoluminescence,X-ray diffraction,microscopic sampling of trace elements,laser samplingδ18O andδ13C,and fluid inclusion homogenization temperature were conducted.The results show that the dolomite is the product of recrystallization of micritic to crystal powder dolomite rather than the product of dolomitization of grain limestone.In the spherical grains are residual gypsum and halite pseudo crystals identical with those in the host micritic dolomite.The spherical particles of dolomite has similar trace elements andδ18O andδ13C characteristics to micritic dolomite.Furthermore,Mn/Sr ratio of the fine-medium dolomite between the dolomite grains is about 5-8,while Mn/Sr ratios of calcite in limestone,micritic dolostone in micritic dolomite,and micritic and powdery dolomite are about 0-2,indicating that the dolomite experienced strong diagenesis.Homogenization temperature of inclusions of fine-medium dolomite is about 148.19°C,higher than that of inclusions in micritic to crystal powder dolomite(about 122.60°C),which also supports the conclusion that the grain dolomite experienced burial diagenesis and negative shift ofδ18O andδ13C.Theδ18O,δ13C values of micritic to crystal powder dolomite match with the negative migration,but those of calcite in limestone don’t.It is of great significance to elucidate the genesis of"dolomite recrystallization"for the prediction of such dolomite reservoirs.
文摘China's continental crust (CCC)has an average thickness of 47km,with the uppercontinental crust (CUCC)being 31 km and the sedimentary layer(CSL)5 km in thickness.The CCC,CUCC and CSL measure 12.437×10^17,8.005×10^17 and 1.146×10^17 metric tons in mass,respectively.The mass ratio of the upper continental crust to the lower one is 1.8:1.The element abundances were calculated for the CCC,CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data.The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%.REE characteristics,the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.
文摘In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.
文摘A primary magma not only represents the starting point of a fractional crystallization process,but also is the product of an equilibrium or fractional partial melting process in a mantle. Element abundance relation ships in the primary magma obey both the law of power function for fractional crystallization and the law of fractional linear function for Nullibrium partial melting. Based on this double nature of the primary magma, the authors advanced a principle to restore the primary magma composition from that of an igneous rock series with petrogenesis of fractional crystalization and put forward an approach of estimating the element abundance of the primary magma, exemplified by the rare-earth elements in the Andes volcanic rock series.
文摘To evaluate the comprehensive exploitation and utilization values of coal resources in Baise basin of Guangxi, the Paleogene coal of Linchang coal mine were sampled and studied. The enrichment characteristics, occurrence modes, and geochemical origin of valuable trace elements in coal were studied by using X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), polarizing microscope, X-ray fluorescence spectrometry (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS). The results reveal that Linchang coal is ultra-low calorific value lignite with high ash, medium sulfur, medium-high moisture and medium volatilization. The minerals are mainly composed of illite, kaolinite, quartz, pyrite, siderite, bassanite, anhydrite and magnesium-containing calcite. Compared with average values for world low-rank coals, the contents of valuable trace elements in Linchang coal are higher on the whole, which is characterized by the high enrichment o<span>f U, the enrichment of elements Li, V and Ag, and the slight enrichment of</span> elements Be, Ga and Se. Lithium, V, Ga and Ag mainly occur in clay minerals including illite and kaolinite, and part of V is related to organic matter. Th<span>e carriers of Be in coal are clay minerals and organic matter. Selenium is </span>mainly combined with organic matter and a small amount exists in pyrite. Uranium is primarily organically bound in coal. The enrichment of valuable trace elements in Linchang coal is influenced by the sedimentary source, coal<span>-forming environment, underground circulating water and geological structure. The sedimentary environment of the coal seam is an acid-reduced terrestrial peat swamp, and the source is Triassic sedimentary rocks weathered f</span>rom feldspathic volcanic rocks around Baise basin.
基金financially supported jointly by the NSFC program(40904051)CAS Program(XDA04071900)Science and Technology Development Fund in Macao SAR(Grant Number:048/2012/A2)
文摘The elemental abundances of lunar surface are the important clues to study the formation and evolution history of the Moon. In 2010, China's Chang'E-2(CE-2) lunar orbiter carried a set of X-ray spectrometer(XRS) to investigate the elemental abundances of the lunar surface. During CE-2's life span around the Moon, the XRS experienced several events of solar flare. The X-ray solar monitor onboard recorded the spectra of solar X-rays at the same time. In this paper, we introduced the XRS instrument and data product. We analyzed the characteristics of the XRS data. Using the data obtained during an M solar flare event which had occurred on Feb. 16, 2011, we derived the elemental abundances of Mg, Al, Si, Ca and Fe of the lunar surface in the Oceanus Procellarum. Finally, we discussed the factors that influence the accuracy of the inversion.
基金The work was supported by the Nationa1 Natural ScienceFoundation of China(Grant No.40231002 and 40076032)the project of Chinese Academy of Sciences(Grant No.KZCX2-303)
文摘This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials. Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes, evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglacial sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the proglacial foreland of modern glacier.
基金The National Natural Science Foundation of China under contract Nos 41376057,41306047,41676056the Spanish project SUBVENT under contract No.CGL2012-39524-C02
文摘Ferromanganese nodules and crusts contain relatively high concentration of rare earth elements(REE) and yttrium(REY),with a growing interest in exploitation as an alternative to land-based REY resources.On the basis of comprehensive geochemical approach,the abundance and distribution of REY in the ferromanganese nodules from the South China Sea are analyzed.The results indicate that the REY contents in ferromanganese deposits show a clear geographic regularity.Total REY contents range from 69.1×10^-6 to 2 919.4×10^-6,with an average value of 1 459.5×10^-6.Especially,the enrichment rate of Ce content is high,accounting for almost 60% of the total REY.This REE enrichment is controlled mainly by the sorption of ferromanganese oxides and clay minerals in the nodules and crusts.Moreover,the total REY are higher in ferromanganese deposits of hydrogenous origin than of diagenetic origin.Finally,Light REE(LREE) and heavy REE(HREE) oxides of the ferromanganese deposits in the study area can be classified into four grades: non-enriched type,weakly enriched type,enriched type,and extremely enriched type.According to the classification criteria of rare earth resources,the Xisha and Zhongsha platform-central deep basin areas show a great potential for these rare earth metals.
基金supported by the National Natural Science Foundation of China (Grant No.41273060)
文摘In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.
文摘The continental crustobody of China is composed of three regional crustobodies, i. e., the Cathaysian crustobody, the West China crustobody and the South Tibet crustobody. This paper gives their mass models and element abundance values and discusses their regional abundance characteristics from metallogenic elernents, heat source elements and lanthanide elements. The conclusion is that their geochemical backgrounds are quite different from each other.
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(Grant Nos.26106002 and 26106006)
文摘The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.
基金supported by the National Natural Science Foundation of China (Grant No 10447141)the Youth Foundation of Beijing University of Chemical Technology,China (Grant No QN0622)
文摘In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition, a group of analytical solutions for the network equation are obtained. With the analytical solutions, a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.