Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorgh...Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorghum halepense and Xanthium strumarium) and non native (Abutilon theophrasti, Datura stramonium, Solanum elaeagnifolium and Verbesina encelioide) weeds of Lebanon. A global positioning system (Garmin 2006) was used for precise waypoint, elevation, navigation and distance. The result of interviewing and interacting with the residents in 95 villages distributed between the Beq'aa and the North governorates of Lebanon, along with the observations made on the route, yielded the first detection of Abutilon theophrasti in both governorates. Solanum elaeagnifolium and Verbesina encelioide were not found in the agro-ecosystems of either governorates. This is the first report of the introduction ofAbutilon theophrasti in Lebanon and the establishment of a baseline data on weeds of Lebanon. The adoption of an integrated weed management program with a quarantine and control techniques and methods is needed to manage the spreading of weeds and to lessen their ability to adapt to a constantly changing system which uses several control practices.展开更多
Nine field trials (4 in corn and 5 in soybean) were conducted over 2 years (2014 and 2015) to determine if there is greater benefit of adding ammonium sulfate (AMS) (2.5 L·ha<sup>ˉ1</sup>) or an equa...Nine field trials (4 in corn and 5 in soybean) were conducted over 2 years (2014 and 2015) to determine if there is greater benefit of adding ammonium sulfate (AMS) (2.5 L·ha<sup>ˉ1</sup>) or an equal dollar value of glyphosate (406 g·ae·ha<sup>ˉ1</sup>) to glyphosate applied at 450, 675 or 900 g·ae·ha<sup>ˉ1</sup> for weed control in corn and soybean. Glyphosate applied at 450 g·ae·ha<sup>ˉ1</sup> controlled velvetleaf 90% to 98%, common ragweed 80% - 97%, common lambsquarters 91% - 99%, Eastern black nightshade 83% - 100% and barnyardgrass 73% - 97% in corn and common ragweed 37% - 89%, common lambsquarters 39% - 98%, barnyardgrass 90% - 98% and green foxtail 91% - 98% in soybean. The addition of AMS to glyphosate applied at 450, 675 or 900 g·ae·ha<sup>ˉ1</sup> provided little to no added benefit for the control of velvetleaf, common ragweed, common lambsquarters, Eastern black nightshade, barnyardgrass and green foxtail in corn and soybean. There was a greater benefit in weed control efficacy by simply adding and equal dollar value of glyphosate (406 g·ae·ha<sup>ˉ1</sup>) than AMS (2.5 L·ha<sup>ˉ1</sup>) to glyphosate. There was no difference in corn or soybean yield among the herbicide treatments evaluated. Based on these results, addition of AMS to glyphosate at rates evaluated had little benefit on weed control efficacy or yield of corn and soybean.展开更多
During the last ice age, CO2 concentration ([CO2]) was 180-200 umol/mol compared with the modern value of 380 umol/mol, and global temperatures were -8 ℃ cooler. Relatively little is known about the responses of C3...During the last ice age, CO2 concentration ([CO2]) was 180-200 umol/mol compared with the modern value of 380 umol/mol, and global temperatures were -8 ℃ cooler. Relatively little is known about the responses of C3 and C4 species to longterm exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 umol/mol CO2 with current (30/24℃) and glacial (22/16℃) temperatures for 22d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5x the total mass of the C3 species versus 14x at the high temperature. This difference was due to a reduction in C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespiration/net photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage.展开更多
文摘Surveying and early detection of invasive weeds are essential for strategic management and monitoring. Accordingly, a weed mapping was conducted during July 2011, against native (Orobanche ramosa, Cuscuta spp., Sorghum halepense and Xanthium strumarium) and non native (Abutilon theophrasti, Datura stramonium, Solanum elaeagnifolium and Verbesina encelioide) weeds of Lebanon. A global positioning system (Garmin 2006) was used for precise waypoint, elevation, navigation and distance. The result of interviewing and interacting with the residents in 95 villages distributed between the Beq'aa and the North governorates of Lebanon, along with the observations made on the route, yielded the first detection of Abutilon theophrasti in both governorates. Solanum elaeagnifolium and Verbesina encelioide were not found in the agro-ecosystems of either governorates. This is the first report of the introduction ofAbutilon theophrasti in Lebanon and the establishment of a baseline data on weeds of Lebanon. The adoption of an integrated weed management program with a quarantine and control techniques and methods is needed to manage the spreading of weeds and to lessen their ability to adapt to a constantly changing system which uses several control practices.
文摘Nine field trials (4 in corn and 5 in soybean) were conducted over 2 years (2014 and 2015) to determine if there is greater benefit of adding ammonium sulfate (AMS) (2.5 L·ha<sup>ˉ1</sup>) or an equal dollar value of glyphosate (406 g·ae·ha<sup>ˉ1</sup>) to glyphosate applied at 450, 675 or 900 g·ae·ha<sup>ˉ1</sup> for weed control in corn and soybean. Glyphosate applied at 450 g·ae·ha<sup>ˉ1</sup> controlled velvetleaf 90% to 98%, common ragweed 80% - 97%, common lambsquarters 91% - 99%, Eastern black nightshade 83% - 100% and barnyardgrass 73% - 97% in corn and common ragweed 37% - 89%, common lambsquarters 39% - 98%, barnyardgrass 90% - 98% and green foxtail 91% - 98% in soybean. The addition of AMS to glyphosate applied at 450, 675 or 900 g·ae·ha<sup>ˉ1</sup> provided little to no added benefit for the control of velvetleaf, common ragweed, common lambsquarters, Eastern black nightshade, barnyardgrass and green foxtail in corn and soybean. There was a greater benefit in weed control efficacy by simply adding and equal dollar value of glyphosate (406 g·ae·ha<sup>ˉ1</sup>) than AMS (2.5 L·ha<sup>ˉ1</sup>) to glyphosate. There was no difference in corn or soybean yield among the herbicide treatments evaluated. Based on these results, addition of AMS to glyphosate at rates evaluated had little benefit on weed control efficacy or yield of corn and soybean.
基金Supported by the US Department of Energy (DE-FG02-95ER62124)the US National Science Foundation (0517668 and 0746822)an American Fellowship to JK Ward from the American Association of University Women Educational Foundation.
文摘During the last ice age, CO2 concentration ([CO2]) was 180-200 umol/mol compared with the modern value of 380 umol/mol, and global temperatures were -8 ℃ cooler. Relatively little is known about the responses of C3 and C4 species to longterm exposure to glacial conditions. Here Abutilon theophrasti Medik. (C3) and Amaranthus retroflexus L. (C4) were grown at 200 umol/mol CO2 with current (30/24℃) and glacial (22/16℃) temperatures for 22d. Overall, the C4 species exhibited a large growth advantage over the C3 species at low [CO2]. However, this advantage was reduced at low temperature, where the C4 species produced 5x the total mass of the C3 species versus 14x at the high temperature. This difference was due to a reduction in C4 growth at low temperature, since the C3 species exhibited similar growth between temperatures. Physiological differences between temperatures were not detected for either species, although photorespiration/net photosynthesis was reduced in the C3 species grown at low temperature, suggesting evidence of improved carbon balance at this treatment. This system suggests that C4 species had a growth advantage over C3 species during low [CO2] of the last ice age, although concurrent reductions in temperatures may have reduced this advantage.