期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization of the S-band side-coupled cavities for proton acceleration 被引量:3
1
作者 Hao-Yun Li Xin-Miao Wan +2 位作者 Wei Chen Chen-Hui Shi Zhi-Hui Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期1-9,共9页
The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast siz... The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators.The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac(SCL)for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV.We carried out investigations into several vital factors of S-band SCL for proton acceleration,such as optimization of SCL cavity geometry,end cell tuning,and bridge coupler design.Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MX/m throughout the acceleration process,and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field.We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning;results of the theoretical analysis agreed well with the 3D simulation.We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters,and the field distribution un-uniformness was\1.5%for a two-tank module.The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design. 展开更多
关键词 Proton beam Side-coupled cavity linac accelerating cavity Biperiodic structure Bridge coupler
下载PDF
Development of X-band accelerating structures for high gradients 被引量:1
2
作者 S. Bini V. Chimenti +10 位作者 A. Marcelli L. Palumbo B. Spataro V. A. Dolgashev S. Tantawi A. D. Yeremian Y. Higashi M. G. Grimaldi L. Romano F. Ruffino R. Parodi 《Chinese Physics C》 SCIE CAS CSCD 2012年第7期639-647,共9页
Short copper standing wave (SW) structures operating at an X-band frequency have been recently designed and manufactured at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) ... Short copper standing wave (SW) structures operating at an X-band frequency have been recently designed and manufactured at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) using the vacuum brazing technique. High power tests of the structures have been performed at the SLAC National Accelerator Laboratory. In this manuscript we report the results of these tests and the activity in progress to enhance the high gradient performance of the next generation of structures, particularly the technological characterization of high performance coatings obtained via molybdenum sputtering. 展开更多
关键词 high-gradients soft X-ray FEL RF cavities for particle accelerators RF sputtering
原文传递
Design study of a radio-frequency quadrupole for high-intensity beams
3
作者 Jungbae Bahng Eun-San Kim Bong-Hyuk Choi 《Chinese Physics C》 SCIE CAS CSCD 2017年第7期142-150,共9页
The Rare isotope Accelerator Of Newness(RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project(RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to200-MeV/u-uran... The Rare isotope Accelerator Of Newness(RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project(RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to200-MeV/u-uranium with continuous wave(CW) power of 400 k W to support research in various scientific fields.Its system consists of an ECR ion source, LEBTs with 10 ke V/u, CW RFQ accelerator with 81.25 MHz and 500 ke V/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator(QWR) section with 81.25 MHz and a Half Wave Resonator(HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton,deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 ke V/u to 1.5 MeV/u and currents in the m A range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D^+RFQ design. The D^+RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. 展开更多
关键词 heavy-ion accelerator RFQ accelerator high intensity RFQ beam dynamics RFQ cavity design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部