A new type of robust traje ctory tracking control for harmonic using joint torque sensor and joint acceleration sensor information is concerned with.Joint torque sensor information is used to compensate the uncertaint...A new type of robust traje ctory tracking control for harmonic using joint torque sensor and joint acceleration sensor information is concerned with.Joint torque sensor information is used to compensate the uncertainty of link and load parameters. Joint acceleration feedback control will enhace the robustness of the driving system, resist the dynamic uncertainties and disturbing torque acted on the joint axis within definite bandwidth, improve the joint tracking performance, and resist the vibration of the load side of the harmonic drive system. Experimental studies are carried out and comparison of several controllers , such as PD and sensor- based control, the experimental results clearly illustrate the effectiveness of the proposed methods.展开更多
An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified ca...An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified cable suspended mass-spring-damping system which is used to mimic the vertical gait of a walking human.A specifically designed cable pulley suspended cam-slider system is used to mimic the walking gait of a human in vertical direction.A load cell is installed to connect the slider and the cable which is driven by a winch based on the acceleration feedback.The contact force between the slider and the cam is measured to evaluate the walking load of the system.The experimental results demonstrate that the proposed active BWS system can simultaneously reduce both gravitational and inertial load of the walking body,which implies that the walking body suspended in such a BWS system will dynamically behave as if certain amount of body mass had been removed.展开更多
A novel numerical method is presented to update mass and stiffness matrices simultaneously with measured vibration data by means of the combined acceleration and displacement output feedback.By the method,the required...A novel numerical method is presented to update mass and stiffness matrices simultaneously with measured vibration data by means of the combined acceleration and displacement output feedback.By the method,the required displacement and acceleration output feedback gain matrices are determined,and thus the optimal approximation mass matrix and stiffness matrix which satisfy the required orthogonality relation and eigenvalue equation are found.The proposed method is computationally efficient and the updated mass and stiffness matrices are also symmetric and have the compact expressions.The numerical example shows that the proposed method is reliable and attractive.展开更多
文摘A new type of robust traje ctory tracking control for harmonic using joint torque sensor and joint acceleration sensor information is concerned with.Joint torque sensor information is used to compensate the uncertainty of link and load parameters. Joint acceleration feedback control will enhace the robustness of the driving system, resist the dynamic uncertainties and disturbing torque acted on the joint axis within definite bandwidth, improve the joint tracking performance, and resist the vibration of the load side of the harmonic drive system. Experimental studies are carried out and comparison of several controllers , such as PD and sensor- based control, the experimental results clearly illustrate the effectiveness of the proposed methods.
文摘An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified cable suspended mass-spring-damping system which is used to mimic the vertical gait of a walking human.A specifically designed cable pulley suspended cam-slider system is used to mimic the walking gait of a human in vertical direction.A load cell is installed to connect the slider and the cable which is driven by a winch based on the acceleration feedback.The contact force between the slider and the cam is measured to evaluate the walking load of the system.The experimental results demonstrate that the proposed active BWS system can simultaneously reduce both gravitational and inertial load of the walking body,which implies that the walking body suspended in such a BWS system will dynamically behave as if certain amount of body mass had been removed.
文摘A novel numerical method is presented to update mass and stiffness matrices simultaneously with measured vibration data by means of the combined acceleration and displacement output feedback.By the method,the required displacement and acceleration output feedback gain matrices are determined,and thus the optimal approximation mass matrix and stiffness matrix which satisfy the required orthogonality relation and eigenvalue equation are found.The proposed method is computationally efficient and the updated mass and stiffness matrices are also symmetric and have the compact expressions.The numerical example shows that the proposed method is reliable and attractive.