Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of t...Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of the signal characteristics,such as the generation mechanism,the geophysical properties,and the significance of the corresponding rock physics,remains unclear,which makes it difficult to both scientifically evaluate and take full advantage of the different types of geophones.In this paper,the mechanism by which seismic waves are generated is studied based on the spring–damped vibration theory.The physical characteristics of the three above-mentioned signal types and the relationships among the physical properties of the signals and medium are analyzed,as well as the signalto-noise ratio(SNR),resolution,and spectrum characteristics.Based on laboratory tests,field experiments,and applications,we obtained the following conclusions.The acceleration signal reflects the elastic characteristics of the medium and the change rules,and the signal strength is positively correlated with physical property changes.The acceleration signal has favorable attributes,such as small distortion,high fidelity,strong high-frequency amplitudes,and a wide frequency band.Therefore,the acceleration signal is more suitable for high-precision seismic exploration of complex media.In addition,the P-wave acceleration signal more accurately reflects the elastic Young modulus,shear modulus,and density changes than the velocity signal.However,the sensitivity decreases with increasing shear modulus and density.For the S-wave,the acceleration signal is more sensitive to the shear modulus and density than the velocity signal.展开更多
A novel damage assessment method based on the decay ratio of acceleration signals(DRAS)was proposed.Two experimental tests were used to show the efficiency.Three beams were gradually damaged,and then the changes of dy...A novel damage assessment method based on the decay ratio of acceleration signals(DRAS)was proposed.Two experimental tests were used to show the efficiency.Three beams were gradually damaged,and then the changes of dynamic parameters were monitored from initial to failure state.In addition,a new method was compared with the linear modal-based damage assessment using wavelet transform(WT).The results clearly show that DRAS increases in linear elasticity state and microcrack propagation state,while DRAS decreases in macrocrack propagation state.Preliminary analysis was developed considering the beat phenomenon in the nonlinear state to explain the turn point of DRAS.With better sensibility of damage than modal parameters,probably DRAS is a promising damage indicator in damage assessment.展开更多
Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as t...Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.展开更多
In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluate...In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluated in the parallel distance framework. First, the parallel driving 3.0 system included control and management platform, intelligent vehicle platform and remote-control platform is introduced. Then,Markov chain(MC) is utilized to model the transition probability matrix of control commands in these systems. Furthermore, to distinguish the control variables in artificial and physical driving conditions, different distance calculation methods are enumerated to specify the differences between the virtual and real signals. By doing this, the real system can be guided and the virtual system can be im-proved. Finally, simulation results exhibit the merits and multiple applications of the proposed parallel distance framework.展开更多
Smartphone,as a smart device with multiple built-in sensors,can be used for collecting information(e.g.,vibration and location).In this paper,we propose an approach for using the smartphone as a sensing platform to ob...Smartphone,as a smart device with multiple built-in sensors,can be used for collecting information(e.g.,vibration and location).In this paper,we propose an approach for using the smartphone as a sensing platform to obtain real-time data on vehicle acceleration,velocity,and location through the development of the corresponding application software and thereby achieve the green concept based monitoring of the track condition during subway rail transit.Field tests are conducted to verify the accuracy of smartphones in terms of the obtained data’s standard deviation(SD),Sperling index(SI),and International Organization for Standardization(ISO)-2631 weighted acceleration index(WAI).A vehicle-positioning method,together with the coordinate alignment algorithm for a Global Positioning System(GPS)free tunnel environment,is proposed.Using the time-domain integration method,the relationship between the longitudinal acceleration of a vehicle and the subway location is established,and the distance between adjacent stations of the subway is calculated and compared with the actual values.The effectiveness of the method is verified,and it is confirmed that this approach can be used in the GPS-free subway tunnel environment.It is also found that using the proposed vehicle-positioning method,the integral error of displacement of a single subway section can be controlled to within 5%.This study can make full use of smartphones and offer a smart and eco-friendly approach for human life in the field of intelligent transportation systems.展开更多
基金supported by the National Major Science and Technology Project of“the 13th Five-year Plan”(No.2017ZX05005004003)。
文摘Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of the signal characteristics,such as the generation mechanism,the geophysical properties,and the significance of the corresponding rock physics,remains unclear,which makes it difficult to both scientifically evaluate and take full advantage of the different types of geophones.In this paper,the mechanism by which seismic waves are generated is studied based on the spring–damped vibration theory.The physical characteristics of the three above-mentioned signal types and the relationships among the physical properties of the signals and medium are analyzed,as well as the signalto-noise ratio(SNR),resolution,and spectrum characteristics.Based on laboratory tests,field experiments,and applications,we obtained the following conclusions.The acceleration signal reflects the elastic characteristics of the medium and the change rules,and the signal strength is positively correlated with physical property changes.The acceleration signal has favorable attributes,such as small distortion,high fidelity,strong high-frequency amplitudes,and a wide frequency band.Therefore,the acceleration signal is more suitable for high-precision seismic exploration of complex media.In addition,the P-wave acceleration signal more accurately reflects the elastic Young modulus,shear modulus,and density changes than the velocity signal.However,the sensitivity decreases with increasing shear modulus and density.For the S-wave,the acceleration signal is more sensitive to the shear modulus and density than the velocity signal.
基金supported by the National Natural Science Foundation of China(Grant No.50579081)the Graduate Innovation Fund of Zhejiang(No.YK2008025).
文摘A novel damage assessment method based on the decay ratio of acceleration signals(DRAS)was proposed.Two experimental tests were used to show the efficiency.Three beams were gradually damaged,and then the changes of dynamic parameters were monitored from initial to failure state.In addition,a new method was compared with the linear modal-based damage assessment using wavelet transform(WT).The results clearly show that DRAS increases in linear elasticity state and microcrack propagation state,while DRAS decreases in macrocrack propagation state.Preliminary analysis was developed considering the beat phenomenon in the nonlinear state to explain the turn point of DRAS.With better sensibility of damage than modal parameters,probably DRAS is a promising damage indicator in damage assessment.
基金supported jointly by the National Natural Science Foundation Fund of China (No.40930418)Chinese government-funded scientific program of the Sino Probe Deep Exploration in China (SinoProbe03)the National Science and Technology Support Program Project (No. 2011BAB04B01)
文摘Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.
基金supported in part by the National Natural Science Foundation of China(61533019,91720000)Beijing Municipal Science and Technology Commission(Z181100008918007)the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles(ICRI-IACV)。
文摘In this paper, a new paradigm named parallel distance is presented to measure the data information in parallel driving system. As an example, the core variables in the parallel driving system are measured and evaluated in the parallel distance framework. First, the parallel driving 3.0 system included control and management platform, intelligent vehicle platform and remote-control platform is introduced. Then,Markov chain(MC) is utilized to model the transition probability matrix of control commands in these systems. Furthermore, to distinguish the control variables in artificial and physical driving conditions, different distance calculation methods are enumerated to specify the differences between the virtual and real signals. By doing this, the real system can be guided and the virtual system can be im-proved. Finally, simulation results exhibit the merits and multiple applications of the proposed parallel distance framework.
基金the National Natural Science Foundation of China(Nos.51425804 and U1734207)the National Key R&D Program of China(No.2016YFC0802203-4)。
文摘Smartphone,as a smart device with multiple built-in sensors,can be used for collecting information(e.g.,vibration and location).In this paper,we propose an approach for using the smartphone as a sensing platform to obtain real-time data on vehicle acceleration,velocity,and location through the development of the corresponding application software and thereby achieve the green concept based monitoring of the track condition during subway rail transit.Field tests are conducted to verify the accuracy of smartphones in terms of the obtained data’s standard deviation(SD),Sperling index(SI),and International Organization for Standardization(ISO)-2631 weighted acceleration index(WAI).A vehicle-positioning method,together with the coordinate alignment algorithm for a Global Positioning System(GPS)free tunnel environment,is proposed.Using the time-domain integration method,the relationship between the longitudinal acceleration of a vehicle and the subway location is established,and the distance between adjacent stations of the subway is calculated and compared with the actual values.The effectiveness of the method is verified,and it is confirmed that this approach can be used in the GPS-free subway tunnel environment.It is also found that using the proposed vehicle-positioning method,the integral error of displacement of a single subway section can be controlled to within 5%.This study can make full use of smartphones and offer a smart and eco-friendly approach for human life in the field of intelligent transportation systems.