Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AE...Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.展开更多
In contrast to ion beams produced by conventional accelerators,ion beams accelerated by ultrashort intense laser pulses have advantages of ultrashort bunch duration and ultrahigh density,which are achieved in compact ...In contrast to ion beams produced by conventional accelerators,ion beams accelerated by ultrashort intense laser pulses have advantages of ultrashort bunch duration and ultrahigh density,which are achieved in compact size.However,it is still challenging to simultaneously enhance their quality and yield for practical applications such as fast ion ignition of inertial confinement fusion.Compared with other mechanisms of laser-driven ion acceleration,the hole-boring radiation pressure acceleration has a special advantage in generating high-fluence ion beams suitable for the creation of high energy density state of matters.In this paper,we present a review on some theoretical and numerical studies of the hole-boring radiation pressure acceleration.First we discuss the typical field structure associated with this mechanism,its intrinsic feature of oscillations,and the underling physics.Then we will review some recently proposed schemes to enhance the beam quality and the efficiency in the hole-boring radiation pressure acceleration,such as matching laser intensity profile with target density profile,and using two-ion-species targets.Based on this,we propose an integrated scheme for efficient high-quality hole-boring radiation pressure acceleration,in which the longitudinal density profile of a composite target as well as the laser transverse intensity profile are tailored according to the matching condition.展开更多
We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the ra...We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the race condition under parallelization.We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model.We explored the GPU parallel algorithm of assembling stiffness matrix,solving discrete equation,analyzing sensitivity,and updating design variables in detail.We also proposed a node pair-wise method for assembling the stiffnessmatrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization.Furthermore,we investigated the effects of the thread block size,the number of degrees of freedom,and the convergence error of preconditioned conjugate gradient(PCG)on GPU computing performance.Finally,the results of the three numerical examples demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology optimization.To save the cost of optimization calculation,we proposed the appropriate thread block size and the convergence error of the PCG method.展开更多
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp...Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.展开更多
The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast siz...The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators.The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac(SCL)for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV.We carried out investigations into several vital factors of S-band SCL for proton acceleration,such as optimization of SCL cavity geometry,end cell tuning,and bridge coupler design.Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MX/m throughout the acceleration process,and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field.We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning;results of the theoretical analysis agreed well with the 3D simulation.We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters,and the field distribution un-uniformness was\1.5%for a two-tank module.The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design.展开更多
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate...In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.展开更多
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ...To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.展开更多
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ...Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid...Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
Traditionally,offline optimization of power systems is acceptable due to the largely predictable loads and reliable generation.The increasing penetration of fluctuating renewable generation and internet-of-things devi...Traditionally,offline optimization of power systems is acceptable due to the largely predictable loads and reliable generation.The increasing penetration of fluctuating renewable generation and internet-of-things devices allowing for fine-grained controllability of loads have led to the diminishing applicability of offline optimization in the power systems domain,and have redirected attention to online optimization methods.However,online optimization is a broad topic that can be applied in and motivated by different settings,operated on different time scales,and built on different theoretical foundations.This paper reviews the various types of online optimization techniques used in the power systems domain and aims to make clear the distinction between the most common techniques used.In particular,we introduce and compare four distinct techniques used covering the breadth of online optimization techniques used in the power systems domain,i.e.,optimization-guided dynamic control,feedback optimization for single-period problems,Lyapunov-based optimization,and online convex optimization techniques for multi-period problems.Lastly,we recommend some potential future directions for online optimization in the power systems domain.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call...The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.展开更多
Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation ...To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge.The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue.Nevertheless,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of service.Modelling the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging infrastructure.It is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic patterns.When vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering system.Initially,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature selection.Subsequently,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic congestion.Based on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is provided.The results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algorithm(GA),to the theoretical median that would be expected that there is no difference.展开更多
The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To a...The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.展开更多
基金partially supported by the National Science Foundation under(Grant DMS No.1812666)。
文摘Anderson acceleration(AA)is an extrapolation technique designed to speed up fixed-point iterations.For optimization problems,we propose a novel algorithm by combining the AA with the energy adaptive gradient method(AEGD)[arXiv:2010.05109].The feasibility of our algorithm is ensured in light of the convergence theory for AEGD,though it is not a fixed-point iteration.We provide rigorous convergence rates of AA for gradient descent(GD)by an acceleration factor of the gain at each implementation of AA-GD.Our experimental results show that the proposed AA-AEGD algorithm requires little tuning of hyperparameters and exhibits superior fast convergence.
基金This work was supported in part by the National Basic Research Program of China(Grant No.2013CBA01504)the National Natural Science Foundation of China(Grant Nos.11675108,11421064,11405108 and 11374210).
文摘In contrast to ion beams produced by conventional accelerators,ion beams accelerated by ultrashort intense laser pulses have advantages of ultrashort bunch duration and ultrahigh density,which are achieved in compact size.However,it is still challenging to simultaneously enhance their quality and yield for practical applications such as fast ion ignition of inertial confinement fusion.Compared with other mechanisms of laser-driven ion acceleration,the hole-boring radiation pressure acceleration has a special advantage in generating high-fluence ion beams suitable for the creation of high energy density state of matters.In this paper,we present a review on some theoretical and numerical studies of the hole-boring radiation pressure acceleration.First we discuss the typical field structure associated with this mechanism,its intrinsic feature of oscillations,and the underling physics.Then we will review some recently proposed schemes to enhance the beam quality and the efficiency in the hole-boring radiation pressure acceleration,such as matching laser intensity profile with target density profile,and using two-ion-species targets.Based on this,we propose an integrated scheme for efficient high-quality hole-boring radiation pressure acceleration,in which the longitudinal density profile of a composite target as well as the laser transverse intensity profile are tailored according to the matching condition.
基金This work is supported by the National Natural Science Foundation of China(Nos.51875493,51975503,11802261)The financial support to the first author is gratefully acknowledged.
文摘We proposed an improved graphics processing unit(GPU)acceleration approach for three-dimensional structural topology optimization using the element-free Galerkin(EFG)method.This method can effectively eliminate the race condition under parallelization.We established a structural topology optimization model by combining the EFG method and the solid isotropic microstructures with penalization model.We explored the GPU parallel algorithm of assembling stiffness matrix,solving discrete equation,analyzing sensitivity,and updating design variables in detail.We also proposed a node pair-wise method for assembling the stiffnessmatrix and a node-wise method for sensitivity analysis to eliminate race conditions during the parallelization.Furthermore,we investigated the effects of the thread block size,the number of degrees of freedom,and the convergence error of preconditioned conjugate gradient(PCG)on GPU computing performance.Finally,the results of the three numerical examples demonstrated the validity of the proposed approach and showed the significant acceleration of structural topology optimization.To save the cost of optimization calculation,we proposed the appropriate thread block size and the convergence error of the PCG method.
基金Supported by the National Natural Science Foundation of China(No.61574099)
文摘Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.
基金supported by the National Natural Science Foundation of China(Nos.11375122 and 11875197)
文摘The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields.However,proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators.The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac(SCL)for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV.We carried out investigations into several vital factors of S-band SCL for proton acceleration,such as optimization of SCL cavity geometry,end cell tuning,and bridge coupler design.Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MX/m throughout the acceleration process,and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field.We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning;results of the theoretical analysis agreed well with the 3D simulation.We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters,and the field distribution un-uniformness was\1.5%for a two-tank module.The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design.
基金the National Natural Science Foundation of China(Grant No.51305372)the Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City(Grant No.TCIMI201803)the Project of the 2011 Collaborative Innovation Center of Fujian Province(Grant No.2016BJC019).
文摘In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.
基金supported by the“National Natural Science Foundation of China”(Grant Nos.52105106,52305155)the“Jiangsu Province Natural Science Foundation”(Grant Nos.BK20210342,BK20230904)the“Young Elite Scientists Sponsorship Programby CAST”(Grant No.2023JCJQQT061).
文摘To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.
文摘Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
文摘Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the National Natural Science Foundation of China(62103265)the“ChenGuang Program”Supported by the Shanghai Education Development Foundation+1 种基金Shanghai Municipal Education Commission of China(20CG11)the Young Elite Scientists Sponsorship Program by Cast of China Association for Science and Technology。
文摘Traditionally,offline optimization of power systems is acceptable due to the largely predictable loads and reliable generation.The increasing penetration of fluctuating renewable generation and internet-of-things devices allowing for fine-grained controllability of loads have led to the diminishing applicability of offline optimization in the power systems domain,and have redirected attention to online optimization methods.However,online optimization is a broad topic that can be applied in and motivated by different settings,operated on different time scales,and built on different theoretical foundations.This paper reviews the various types of online optimization techniques used in the power systems domain and aims to make clear the distinction between the most common techniques used.In particular,we introduce and compare four distinct techniques used covering the breadth of online optimization techniques used in the power systems domain,i.e.,optimization-guided dynamic control,feedback optimization for single-period problems,Lyapunov-based optimization,and online convex optimization techniques for multi-period problems.Lastly,we recommend some potential future directions for online optimization in the power systems domain.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFF0306202).
文摘The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-48).
文摘To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge.The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue.Nevertheless,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of service.Modelling the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging infrastructure.It is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic patterns.When vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering system.Initially,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature selection.Subsequently,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic congestion.Based on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is provided.The results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algorithm(GA),to the theoretical median that would be expected that there is no difference.
基金This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan,Grant No.AP19674517.
文摘The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.