The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access cont...The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.展开更多
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy...Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.展开更多
With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,howeve...With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.展开更多
Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly...Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.展开更多
Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw...A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.展开更多
In response to the challenges of generating Attribute-Based Access Control(ABAC)policies,this paper proposes a deep learning-based method to automatically generate ABAC policies from natural language documents.This me...In response to the challenges of generating Attribute-Based Access Control(ABAC)policies,this paper proposes a deep learning-based method to automatically generate ABAC policies from natural language documents.This method is aimed at organizations such as companies and schools that are transitioning from traditional access control models to the ABAC model.The manual retrieval and analysis involved in this transition are inefficient,prone to errors,and costly.Most organizations have high-level specifications defined for security policies that include a set of access control policies,which often exist in the form of natural language documents.Utilizing this rich source of information,our method effectively identifies and extracts the necessary attributes and rules for access control from natural language documents,thereby constructing and optimizing access control policies.This work transforms the problem of policy automation generation into two tasks:extraction of access control statements andmining of access control attributes.First,the Chat General Language Model(ChatGLM)isemployed to extract access control-related statements from a wide range of natural language documents by constructing unique prompts and leveraging the model’s In-Context Learning to contextualize the statements.Then,the Iterated Dilated-Convolutions-Conditional Random Field(ID-CNN-CRF)model is used to annotate access control attributes within these extracted statements,including subject attributes,object attributes,and action attributes,thus reassembling new access control policies.Experimental results show that our method,compared to baseline methods,achieved the highest F1 score of 0.961,confirming the model’s effectiveness and accuracy.展开更多
Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is impera...Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.展开更多
Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected again...Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected against unintended access.User permissions often evolve over time,and changes are often made in an ad hoc manner and do not follow any rigorous process.This is largely due to the fact that the structure of the implemented permissions are often determined by experts during initial system configuration and documentation is rarely created.Furthermore,permissions are often not audited due to the volume of information,the requirement of expert knowledge,and the time required to perform manual analysis.This paper presents a novel,unsupervised technique whereby a statistical analysis technique is developed and applied to detect instances of permission creep.The system(herein refereed to as Creeper)has initially been developed for Microsoft systems;however,it is easily extensible and can be applied to other access control systems.Experimental analysis has demonstrated good performance and applicability on synthetic file system permissions with an average accuracy of 96%.Empirical analysis is subsequently performed on five real-world systems where an average accuracy of 98%is established.展开更多
Currently,data security and privacy protection are becoming more and more important.Access control is a method of authorization for users through predefined policies.Token-based access control(TBAC)enhances the manage...Currently,data security and privacy protection are becoming more and more important.Access control is a method of authorization for users through predefined policies.Token-based access control(TBAC)enhances the manageability of authorization through the token.However,traditional access control policies lack the ability to dynamically adjust based on user access behavior.Incorporating user reputation evaluation into access control can provide valuable feedback to enhance system security and flexibility.As a result,this paper proposes a blockchain-empowered TBAC system and introduces a user reputation evaluation module to provide feedback on access control.The TBAC system divides the access control process into three stages:policy upload,token request,and resource request.The user reputation evaluation module evaluates the user’s token reputation and resource reputation for the token request and resource request stages of the TBAC system.The proposed system is implemented using the Hyperledger Fabric blockchain.The TBAC system is evaluated to prove that it has high processing performance.The user reputation evaluation model is proved to be more conservative and sensitive by comparative study with other methods.In addition,the security analysis shows that the TBAC system has a certain anti-attack ability and can maintain stable operation under the Distributed Denial of Service(DDoS)attack environment.展开更多
Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected again...Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected against unintended access.User permissions often evolve over time,and changes are often made in an ad hoc manner and do not follow any rigorous process.This is largely due to the fact that the structure of the implemented permissions are often determined by experts during initial system configuration and documentation is rarely created.Furthermore,permissions are often not audited due to the volume of information,the requirement of expert knowledge,and the time required to perform manual analysis.This paper presents a novel,unsupervised technique whereby a statistical analysis technique is developed and applied to detect instances of permission creep.The system(herein refereed to as Creeper)has initially been developed for Microsoft systems;however,it is easily extensible and can be applied to other access control systems.Experimental analysis has demonstrated good performance and applicability on synthetic file system permissions with an average accuracy of 96%.Empirical analysis is subsequently performed on five real-world systems where an average accuracy of 98% is established.展开更多
Several unique characteristics of Internet of Things(IoT)devices,such as distributed deployment and limited storage,make it challenging for standard centralized access control systems to enable access control in today...Several unique characteristics of Internet of Things(IoT)devices,such as distributed deployment and limited storage,make it challenging for standard centralized access control systems to enable access control in today’s large-scale IoT ecosystem.To solve these challenges,this study presents an IoT access control system called Ether-IoT based on the Ethereum Blockchain(BC)infrastructure with Attribute-Based Access Control(ABAC).Access Contract(AC),Cache Contract(CC),Device Contract(DC),and Policy Contract(PC)are the four central smart contracts(SCs)that are included in the proposed system.CC offers a way to save user characteristics in a local cache system to avoid delays during transactions between BC and IoT devices.AC is the fundamental program users typically need to run to build an access control technique.DC offers a means for storing the resource data created by devices and a method for querying that data.PC offers administrative settings to handle ABAC policies on users’behalf.Ether-IoT,combined with ABAC and the BC,enables IoT access control management that is decentralized,fine-grained and dynamically scalable.This research gives a real-world case study to illustrate the suggested framework’s implementation.In the end,a simulation experiment is performed to evaluate the system’s performance.To ensure data integrity in dispersed systems,the results show that Ether-IoT can sustain high throughput in contexts with a large number of requests.展开更多
In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access cont...In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access control.This paper proposes an Education Archives Sharing and Access Control(EduASAC)system to solve these problems.The system research goal is to realize the sharing of security parameters,the execution of access control,and the recording of system behaviors based on the blockchain network,ensuring the legitimacy of shared membership and the security of education archives.At the same time,the system can be combined with most homomorphic ciphertext retrieval schemes running on the storage server,making the homomorphic ciphertext retrieval mechanism controllable.This paper focuses on the blockchain access control framework and specifically designs smart contracts that conform to the business logic of the EduASAC system.The former adopts a dual-mode access control mechanism combining Discretionary Access Control(DAC)and Mandatory Access Control(MAC)and improves the tagging mode after user permission verification based on the Authentication and Authorization for Constrained Environments(ACE)authorization framework of Open Authorization(OAuth)2.0;the latter is used in the system to vote on nodes to join requests,define access control policies,execute permission verification processes,store,and share system parameters,and standardize the behavior of member nodes.Finally,the EduASAC system realizes the encryption,storage,retrieval,sharing,and access control processes of education archives.To verify the performance of the system,simulation experiments were conducted.The results show that the EduASAC system can meet the high security needs of education archive sharing and ensure the system’s high throughput,low latency,fast decision-making,and fine-grained access control ability.展开更多
This paper first introduces attribute expression to describe attribute-based access control policy.Secondly,an access control policy enforcement language named A-XACML (attribute-XACML)is proposed,which is an extens...This paper first introduces attribute expression to describe attribute-based access control policy.Secondly,an access control policy enforcement language named A-XACML (attribute-XACML)is proposed,which is an extension of XACML.A-XACML is used as a simple,flexible way to express and enforce access control policies,especially attribute-based access control policy,in a variety of environments.The language and schema support include data types,functions,and combining logic which allow simple and complex policies to be defined.Finally,a system architecture and application case of user-role assignment is given to show how attribute expressions and A-XACML work in access control policy description and enforcement.The case shows that attribute expression and A-XACML can describe and enforce the complex access control policy in a simple and flexible way.展开更多
A new role hierarchy model for RBAC (role-based access control) is presented and its features are illustrated through examples. Some new concepts such as private permission, public permission and special permission ar...A new role hierarchy model for RBAC (role-based access control) is presented and its features are illustrated through examples. Some new concepts such as private permission, public permission and special permission are introduced, based on the RRA97 model. Some new role-role inheriting forms such as normal inheritance, private inheritance, public inheritance and special-without inheritance are defined. Based on the ideas mentioned, the new role hierarchy model is formulated. It is easier and more comprehensible to describe role-role relationships through the new model than through the traditional ones. The new model is closer to the real world and its mechanism is more powerful. Particularly it is more suitable when used in large-scale role hierarchies.展开更多
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa...Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traf...Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.展开更多
An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning secur...An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.展开更多
In most existing CP-ABE schemes, there is only one authority in the system and all the public keys and private keys are issued by this authority, which incurs ciphertext size and computation costs in the encryption an...In most existing CP-ABE schemes, there is only one authority in the system and all the public keys and private keys are issued by this authority, which incurs ciphertext size and computation costs in the encryption and decryption operations that depend at least linearly on the number of attributes involved in the access policy. We propose an efficient multi-authority CP-ABE scheme in which the authorities need not interact to generate public information during the system initialization phase. Our scheme has constant ciphertext length and a constant number of pairing computations. Our scheme can be proven CPA-secure in random oracle model under the decision q-BDHE assumption. When user's attributes revocation occurs, the scheme transfers most re-encryption work to the cloud service provider, reducing the data owner's computational cost on the premise of security. Finally the analysis and simulation result show that the schemes proposed in this thesis ensure the privacy and secure access of sensitive data stored in the cloud server, and be able to cope with the dynamic changes of users' access privileges in large-scale systems. Besides, the multi-authority ABE eliminates the key escrow problem, achieves the length of ciphertext optimization and enhances the effi ciency of the encryption and decryption operations.展开更多
文摘The Internet of Things(IoT)access controlmechanism may encounter security issues such as single point of failure and data tampering.To address these issues,a blockchain-based IoT reputation value attribute access control scheme is proposed.Firstly,writing the reputation value as an attribute into the access control policy,and then deploying the access control policy in the smart contract of the blockchain system can enable the system to provide more fine-grained access control;Secondly,storing a large amount of resources fromthe Internet of Things in Inter Planetary File System(IPFS)to improve system throughput;Finally,map resource access operations to qualification tokens to improve the performance of the access control system.Complete simulation experiments based on the Hyperledger Fabric platform.Fromthe simulation experimental results,it can be seen that the access control system can achieve more fine-grained and dynamic access control while maintaining high throughput and low time delay,providing sufficient reliability and security for access control of IoT devices.
基金partly supported by the University of Malaya Impact Oriented Interdisci-plinary Research Grant under Grant IIRG008(A,B,C)-19IISS.
文摘Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management.
基金supported by National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation(Grant No.M21034)BUPT Excellent Ph.D Students Foundation(Grant No.CX2023218)。
文摘With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A3063257)supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley Support Program(2023-DD-RD-0152)supervised by the Innovation Foundation.
文摘Data trading enables data owners and data requesters to sell and purchase data.With the emergence of blockchain technology,research on blockchain-based data trading systems is receiving a lot of attention.Particularly,to reduce the on-chain storage cost,a novel paradigm of blockchain and cloud fusion has been widely considered as a promising data trading platform.Moreover,the fact that data can be used for commercial purposes will encourage users and organizations from various fields to participate in the data marketplace.In the data marketplace,it is a challenge how to trade the data securely outsourced to the external cloud in a way that restricts access to the data only to authorized users across multiple domains.In this paper,we propose a cross-domain bilateral access control protocol for blockchain-cloud based data trading systems.We consider a system model that consists of domain authorities,data senders,data receivers,a blockchain layer,and a cloud provider.The proposed protocol enables access control and source identification of the outsourced data by leveraging identity-based cryptographic techniques.In the proposed protocol,the outsourced data of the sender is encrypted under the target receiver’s identity,and the cloud provider performs policy-match verification on the authorization tags of the sender and receiver generated by the identity-based signature scheme.Therefore,data trading can be achieved only if the identities of the data sender and receiver simultaneously meet the policies specified by each other.To demonstrate efficiency,we evaluate the performance of the proposed protocol and compare it with existing studies.
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
基金supported by the National Natural Science Foundation of China Project(No.62302540)The Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+2 种基金Natural Science Foundation of Henan Province Project(No.232300420422)The Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018)Key Research and Promotion Project of Henan Province in 2021(No.212102310480).
文摘A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.
基金supported by the National Natural Science Foundation of China Project(No.62302540),please visit their website at https://www.nsfc.gov.cn/(accessed on 18 June 2024)The Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020),Further details can be found at http://xt.hnkjt.gov.cn/data/pingtai/(accessed on 18 June 2024)Natural Science Foundation of Henan Province Youth Science Fund Project(No.232300420422),you can visit https://kjt.henan.gov.cn/2022/09-02/2599082.html(accessed on 18 June 2024).
文摘In response to the challenges of generating Attribute-Based Access Control(ABAC)policies,this paper proposes a deep learning-based method to automatically generate ABAC policies from natural language documents.This method is aimed at organizations such as companies and schools that are transitioning from traditional access control models to the ABAC model.The manual retrieval and analysis involved in this transition are inefficient,prone to errors,and costly.Most organizations have high-level specifications defined for security policies that include a set of access control policies,which often exist in the form of natural language documents.Utilizing this rich source of information,our method effectively identifies and extracts the necessary attributes and rules for access control from natural language documents,thereby constructing and optimizing access control policies.This work transforms the problem of policy automation generation into two tasks:extraction of access control statements andmining of access control attributes.First,the Chat General Language Model(ChatGLM)isemployed to extract access control-related statements from a wide range of natural language documents by constructing unique prompts and leveraging the model’s In-Context Learning to contextualize the statements.Then,the Iterated Dilated-Convolutions-Conditional Random Field(ID-CNN-CRF)model is used to annotate access control attributes within these extracted statements,including subject attributes,object attributes,and action attributes,thus reassembling new access control policies.Experimental results show that our method,compared to baseline methods,achieved the highest F1 score of 0.961,confirming the model’s effectiveness and accuracy.
基金supported in part by the Beijing Natural Science Foundation under Grant L192031the National Key Research and Development Program under Grant 2020YFA0711303。
文摘Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.
基金This work was undertaken during a project funded by the UK’s Digital Catapult Researcher in Residency Fellowship programme(Grant Ref:EP/M029263/1).The funding supported the research,development,and empirical testing presented in this paper.
文摘Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected against unintended access.User permissions often evolve over time,and changes are often made in an ad hoc manner and do not follow any rigorous process.This is largely due to the fact that the structure of the implemented permissions are often determined by experts during initial system configuration and documentation is rarely created.Furthermore,permissions are often not audited due to the volume of information,the requirement of expert knowledge,and the time required to perform manual analysis.This paper presents a novel,unsupervised technique whereby a statistical analysis technique is developed and applied to detect instances of permission creep.The system(herein refereed to as Creeper)has initially been developed for Microsoft systems;however,it is easily extensible and can be applied to other access control systems.Experimental analysis has demonstrated good performance and applicability on synthetic file system permissions with an average accuracy of 96%.Empirical analysis is subsequently performed on five real-world systems where an average accuracy of 98%is established.
基金supported by NSFC under Grant No.62341102National Key R&D Program of China under Grant No.2018YFA0701604.
文摘Currently,data security and privacy protection are becoming more and more important.Access control is a method of authorization for users through predefined policies.Token-based access control(TBAC)enhances the manageability of authorization through the token.However,traditional access control policies lack the ability to dynamically adjust based on user access behavior.Incorporating user reputation evaluation into access control can provide valuable feedback to enhance system security and flexibility.As a result,this paper proposes a blockchain-empowered TBAC system and introduces a user reputation evaluation module to provide feedback on access control.The TBAC system divides the access control process into three stages:policy upload,token request,and resource request.The user reputation evaluation module evaluates the user’s token reputation and resource reputation for the token request and resource request stages of the TBAC system.The proposed system is implemented using the Hyperledger Fabric blockchain.The TBAC system is evaluated to prove that it has high processing performance.The user reputation evaluation model is proved to be more conservative and sensitive by comparative study with other methods.In addition,the security analysis shows that the TBAC system has a certain anti-attack ability and can maintain stable operation under the Distributed Denial of Service(DDoS)attack environment.
基金undertaken during a project funded by the UK’s Digital Catapult Researcher in Residency Fellowship programme(Grant Ref:EP/M029263/1).
文摘Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to computing resources.This is certainly true of file systems whereby information needs to be protected against unintended access.User permissions often evolve over time,and changes are often made in an ad hoc manner and do not follow any rigorous process.This is largely due to the fact that the structure of the implemented permissions are often determined by experts during initial system configuration and documentation is rarely created.Furthermore,permissions are often not audited due to the volume of information,the requirement of expert knowledge,and the time required to perform manual analysis.This paper presents a novel,unsupervised technique whereby a statistical analysis technique is developed and applied to detect instances of permission creep.The system(herein refereed to as Creeper)has initially been developed for Microsoft systems;however,it is easily extensible and can be applied to other access control systems.Experimental analysis has demonstrated good performance and applicability on synthetic file system permissions with an average accuracy of 96%.Empirical analysis is subsequently performed on five real-world systems where an average accuracy of 98% is established.
基金This work was supported by Universiti Kebangsaan Malaysia under“Dana Pecutan Penerbitan FTSM 2022,Dana Softam 2022”。
文摘Several unique characteristics of Internet of Things(IoT)devices,such as distributed deployment and limited storage,make it challenging for standard centralized access control systems to enable access control in today’s large-scale IoT ecosystem.To solve these challenges,this study presents an IoT access control system called Ether-IoT based on the Ethereum Blockchain(BC)infrastructure with Attribute-Based Access Control(ABAC).Access Contract(AC),Cache Contract(CC),Device Contract(DC),and Policy Contract(PC)are the four central smart contracts(SCs)that are included in the proposed system.CC offers a way to save user characteristics in a local cache system to avoid delays during transactions between BC and IoT devices.AC is the fundamental program users typically need to run to build an access control technique.DC offers a means for storing the resource data created by devices and a method for querying that data.PC offers administrative settings to handle ABAC policies on users’behalf.Ether-IoT,combined with ABAC and the BC,enables IoT access control management that is decentralized,fine-grained and dynamically scalable.This research gives a real-world case study to illustrate the suggested framework’s implementation.In the end,a simulation experiment is performed to evaluate the system’s performance.To ensure data integrity in dispersed systems,the results show that Ether-IoT can sustain high throughput in contexts with a large number of requests.
基金supported by the Fundamental Research Funds for the Central Universities.Nos.3282023017,328202251.RL H received the grant.
文摘In the education archive sharing system,when performing homomorphic ciphertext retrieval on the storage server,there are problems such as low security of shared data,confusing parameter management,and weak access control.This paper proposes an Education Archives Sharing and Access Control(EduASAC)system to solve these problems.The system research goal is to realize the sharing of security parameters,the execution of access control,and the recording of system behaviors based on the blockchain network,ensuring the legitimacy of shared membership and the security of education archives.At the same time,the system can be combined with most homomorphic ciphertext retrieval schemes running on the storage server,making the homomorphic ciphertext retrieval mechanism controllable.This paper focuses on the blockchain access control framework and specifically designs smart contracts that conform to the business logic of the EduASAC system.The former adopts a dual-mode access control mechanism combining Discretionary Access Control(DAC)and Mandatory Access Control(MAC)and improves the tagging mode after user permission verification based on the Authentication and Authorization for Constrained Environments(ACE)authorization framework of Open Authorization(OAuth)2.0;the latter is used in the system to vote on nodes to join requests,define access control policies,execute permission verification processes,store,and share system parameters,and standardize the behavior of member nodes.Finally,the EduASAC system realizes the encryption,storage,retrieval,sharing,and access control processes of education archives.To verify the performance of the system,simulation experiments were conducted.The results show that the EduASAC system can meet the high security needs of education archive sharing and ensure the system’s high throughput,low latency,fast decision-making,and fine-grained access control ability.
基金The National High Technology Research and Development Program of China(863Program)(No.2007AA01Z445)
文摘This paper first introduces attribute expression to describe attribute-based access control policy.Secondly,an access control policy enforcement language named A-XACML (attribute-XACML)is proposed,which is an extension of XACML.A-XACML is used as a simple,flexible way to express and enforce access control policies,especially attribute-based access control policy,in a variety of environments.The language and schema support include data types,functions,and combining logic which allow simple and complex policies to be defined.Finally,a system architecture and application case of user-role assignment is given to show how attribute expressions and A-XACML work in access control policy description and enforcement.The case shows that attribute expression and A-XACML can describe and enforce the complex access control policy in a simple and flexible way.
文摘A new role hierarchy model for RBAC (role-based access control) is presented and its features are illustrated through examples. Some new concepts such as private permission, public permission and special permission are introduced, based on the RRA97 model. Some new role-role inheriting forms such as normal inheritance, private inheritance, public inheritance and special-without inheritance are defined. Based on the ideas mentioned, the new role hierarchy model is formulated. It is easier and more comprehensible to describe role-role relationships through the new model than through the traditional ones. The new model is closer to the real world and its mechanism is more powerful. Particularly it is more suitable when used in large-scale role hierarchies.
文摘Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
基金National Key R&D Program of China,Grant/Award Number:2022YFC3303600National Natural Science Foundation of China,Grant/Award Number:62077015Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23F020010。
文摘Transportation systems primarily depend on vehicular flow on roads. Developed coun-tries have shifted towards automated signal control, which manages and updates signal synchronisation automatically. In contrast, traffic in underdeveloped countries is mainly governed by manual traffic light systems. These existing manual systems lead to numerous issues, wasting substantial resources such as time, energy, and fuel, as they cannot make real‐time decisions. In this work, we propose an algorithm to determine traffic signal durations based on real‐time vehicle density, obtained from live closed circuit television camera feeds adjacent to traffic signals. The algorithm automates the traffic light system, making decisions based on vehicle density and employing Faster R‐CNN for vehicle detection. Additionally, we have created a local dataset from live streams of Punjab Safe City cameras in collaboration with the local police authority. The proposed algorithm achieves a class accuracy of 96.6% and a vehicle detection accuracy of 95.7%. Across both day and night modes, our proposed method maintains an average precision, recall, F1 score, and vehicle detection accuracy of 0.94, 0.98, 0.96 and 0.95, respectively. Our proposed work surpasses all evaluation metrics compared to state‐of‐the‐art methodologies.
基金The National Natural Science Foundation of China(No.60403027,60773191,70771043)the National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z403)
文摘An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.
基金supported by National Natural Science Foundation of China under Grant No.60873231Natural Science Foundation of Jiangsu Province under Grant No.BK2009426+1 种基金Major State Basic Research Development Program of China under Grant No.2011CB302903Key University Science Research Project of Jiangsu Province under Grant No.11KJA520002
文摘In most existing CP-ABE schemes, there is only one authority in the system and all the public keys and private keys are issued by this authority, which incurs ciphertext size and computation costs in the encryption and decryption operations that depend at least linearly on the number of attributes involved in the access policy. We propose an efficient multi-authority CP-ABE scheme in which the authorities need not interact to generate public information during the system initialization phase. Our scheme has constant ciphertext length and a constant number of pairing computations. Our scheme can be proven CPA-secure in random oracle model under the decision q-BDHE assumption. When user's attributes revocation occurs, the scheme transfers most re-encryption work to the cloud service provider, reducing the data owner's computational cost on the premise of security. Finally the analysis and simulation result show that the schemes proposed in this thesis ensure the privacy and secure access of sensitive data stored in the cloud server, and be able to cope with the dynamic changes of users' access privileges in large-scale systems. Besides, the multi-authority ABE eliminates the key escrow problem, achieves the length of ciphertext optimization and enhances the effi ciency of the encryption and decryption operations.