Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary ...Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.展开更多
当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究...当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。展开更多
Background: Road traffic accidents are commonly encountered incidents that can cause high-intensity injuries to the victims and have direct impacts on the members of the society. Iran has one of the highest incident r...Background: Road traffic accidents are commonly encountered incidents that can cause high-intensity injuries to the victims and have direct impacts on the members of the society. Iran has one of the highest incident rates of road traffic accidents. The objective of this study was to model the patterns of road traffic accidents leading to injury in Kurdistan province, Iran. Methods: A time-series analysis was conducted to characterize and predict the frequency of road traffic accidents that lead to injury in Kurdistan province. The injuries were categorized into three separate groups which were related to the car occupants, motorcyclists and pedestrian road traffic accident injuries. The Box-Jenkins time-series analysis was used to model the injury observations applying autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) from March 2009 to February 2015 and to predict the accidents up to 24 months later (February 2017). The analysis was carried out using R-3.4.2 statistical software package. Results: A total of 5199 pedestrians, 9015 motorcyclists, and 28,906 car occupants’accidents were observed. The mean (SD) number of car occupant, motorcyclist and pedestrian accident injuries observed were 401.01 (SD 32.78), 123.70 (SD 30.18) and 71.19 (SD 17.92) per year, respectively. The best models for the pattern of car occupant, motorcyclist, and pedestrian injuries were the ARIMA (1, 0, 0), SARIMA (1, 0, 2) (1, 0, 0)12, and SARIMA (1, 1, 1) (0, 0, 1)12, respectively. The motorcyclist and pedestrian injuries showed a seasonal pattern and the peak was during summer (August). The minimum frequency for the motorcyclist and pedestrian injuries were observed during the late autumn and early winter (December and January). Conclusion: Our findings revealed that the observed motorcyclist and pedestrian injuries had a seasonal pattern that was explained by air temperature changes overtime. These findings call the need for close monitoring of the accidents during the high-risk periods in order to control and decrease the rate of the injuries.展开更多
The occurrence of traffic accidents is regular in probability distribution.Using big data mining method to predict traffic accidents is conducive to taking measures to prevent or reduce traffic accidents in advance.In...The occurrence of traffic accidents is regular in probability distribution.Using big data mining method to predict traffic accidents is conducive to taking measures to prevent or reduce traffic accidents in advance.In recent years,prediction methods of traffic accidents used by researchers have some problems,such as low calculation accuracy.Therefore,a prediction model of traffic accidents based on joint probability density feature extraction of big data is proposed in this paper.First,a function of big data joint probability distribution for traffic accidents is established.Second,establishing big data distributed database model of traffic accidents with the statistical analysis method in order to mine the association rules characteristic quantity reflecting the law of traffic accidents,and then extracting the joint probability density feature of big data for traffic accident probability distribution.According to the result of feature extraction,adaptive functional and directivity are predicted,and then the regularity prediction of traffic accidents is realized based on the result of association directional clustering,so as to optimize the design of the prediction model of traffic accidents based on big data.Simulation results show that in predicting traffic accidents,the model in this paper has advantages of relatively high accuracy,relatively good confidence and stable prediction result.展开更多
文摘Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”.
文摘当前建筑业迅速发展,但随之而来的是频频发生的建筑安全事故,造成不可逆转的损失和伤害。虽然近些年来在建筑安全事故控制方面的研究已取得一定的成果,但建筑安全事故仍未得到有效控制。针对建筑业市政工程安全事故总数和死亡人数,探究二者之间的关系,构建灰狼优化算法-支持向量回归机(Grey Wolf Optimization and Support Vactor Regression,GWO-SVR)组合模型,收集2008—2020年每个月的建筑安全事故数据及死亡人数数据集,发现二者之间成正向相关关系,以建筑安全事故数为特征对建筑死亡人数进行预测,精度达到95%以上,对建筑安全资源与人力投入有较大参考价值,有助于提升建筑安全管理水平。
文摘Background: Road traffic accidents are commonly encountered incidents that can cause high-intensity injuries to the victims and have direct impacts on the members of the society. Iran has one of the highest incident rates of road traffic accidents. The objective of this study was to model the patterns of road traffic accidents leading to injury in Kurdistan province, Iran. Methods: A time-series analysis was conducted to characterize and predict the frequency of road traffic accidents that lead to injury in Kurdistan province. The injuries were categorized into three separate groups which were related to the car occupants, motorcyclists and pedestrian road traffic accident injuries. The Box-Jenkins time-series analysis was used to model the injury observations applying autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) from March 2009 to February 2015 and to predict the accidents up to 24 months later (February 2017). The analysis was carried out using R-3.4.2 statistical software package. Results: A total of 5199 pedestrians, 9015 motorcyclists, and 28,906 car occupants’accidents were observed. The mean (SD) number of car occupant, motorcyclist and pedestrian accident injuries observed were 401.01 (SD 32.78), 123.70 (SD 30.18) and 71.19 (SD 17.92) per year, respectively. The best models for the pattern of car occupant, motorcyclist, and pedestrian injuries were the ARIMA (1, 0, 0), SARIMA (1, 0, 2) (1, 0, 0)12, and SARIMA (1, 1, 1) (0, 0, 1)12, respectively. The motorcyclist and pedestrian injuries showed a seasonal pattern and the peak was during summer (August). The minimum frequency for the motorcyclist and pedestrian injuries were observed during the late autumn and early winter (December and January). Conclusion: Our findings revealed that the observed motorcyclist and pedestrian injuries had a seasonal pattern that was explained by air temperature changes overtime. These findings call the need for close monitoring of the accidents during the high-risk periods in order to control and decrease the rate of the injuries.
基金This work was supported by Henan University of Urban Construction Foundation Under Grant No.2017YY012.
文摘The occurrence of traffic accidents is regular in probability distribution.Using big data mining method to predict traffic accidents is conducive to taking measures to prevent or reduce traffic accidents in advance.In recent years,prediction methods of traffic accidents used by researchers have some problems,such as low calculation accuracy.Therefore,a prediction model of traffic accidents based on joint probability density feature extraction of big data is proposed in this paper.First,a function of big data joint probability distribution for traffic accidents is established.Second,establishing big data distributed database model of traffic accidents with the statistical analysis method in order to mine the association rules characteristic quantity reflecting the law of traffic accidents,and then extracting the joint probability density feature of big data for traffic accident probability distribution.According to the result of feature extraction,adaptive functional and directivity are predicted,and then the regularity prediction of traffic accidents is realized based on the result of association directional clustering,so as to optimize the design of the prediction model of traffic accidents based on big data.Simulation results show that in predicting traffic accidents,the model in this paper has advantages of relatively high accuracy,relatively good confidence and stable prediction result.