In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions...In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions. It attempted to answer the following two questions in the case of contamination events: 1) Which are the most hazardous junctions? 2) Which are the most vulnerable junctions? With EPANET toolkit, it simulated the propagation of the contaminant, and calculated the peak concentration of the contaminant and mass delivered at different nodes. According to types of consumers, different weights were assigned to the consumer nodes for assessing the influence of the contaminant on the consumers. Using the method proposed herein, both the hazard index and vulnerability index were calculated for each node in the pipe network. The presented method was therefore applied to the water network of the city of Zhenjiang, which contains two water plants, two booster pump stations with storage tanks. In conclusion, the response time, the relationships between the peak concentration of contami- nant and the total absorption are the most important factors in hazard and vulnerability evaluation of the water distribution network.展开更多
文摘In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions. It attempted to answer the following two questions in the case of contamination events: 1) Which are the most hazardous junctions? 2) Which are the most vulnerable junctions? With EPANET toolkit, it simulated the propagation of the contaminant, and calculated the peak concentration of the contaminant and mass delivered at different nodes. According to types of consumers, different weights were assigned to the consumer nodes for assessing the influence of the contaminant on the consumers. Using the method proposed herein, both the hazard index and vulnerability index were calculated for each node in the pipe network. The presented method was therefore applied to the water network of the city of Zhenjiang, which contains two water plants, two booster pump stations with storage tanks. In conclusion, the response time, the relationships between the peak concentration of contami- nant and the total absorption are the most important factors in hazard and vulnerability evaluation of the water distribution network.