We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric...We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric accretion disc with an internal dynamo around magnetized stars. The structure and evolution of such discs are governed by an evolution equation for matter surface density ∑(R,T). Using the time-dependent equations for an accretion disc we do a linear stability analysis of our steady disc solutions in the presence of the magnetic field generated due to an internal dynamo.展开更多
We simulate the dynamics of slender magnetic flux tubes (MFTs) in the accretion disks of T Tauri stars. The dynamical equations of our model take into account aerodynamic and turbulent drag forces, and the radiative...We simulate the dynamics of slender magnetic flux tubes (MFTs) in the accretion disks of T Tauri stars. The dynamical equations of our model take into account aerodynamic and turbulent drag forces, and the radiative heat exchange between the MFT and ambient gas. The structure of the disk is calculated with the help of our MHD model of the accretion disks. We consider the MFTs formed at distances of 0.027 - 0.8 au from the star with various initial radii and plasma betas β0. The simulations show that MFTs with a weak magnetic field (β0 = 10) rise slowly with speeds less than the speed of sound. MFTs withβ0 = 1 form an outflowing magnetized corona above the disk. Strongly magnetized MFTs (β0 = 0.1) can cause outflows with velocities 20 - 50 km s-1. The tubes rise periodically over times from several days to several months according to our simulations. We propose that periodically rising MFTs can absorb stellar radiation and contribute to the IR-variability of young stellar objects.展开更多
Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate...Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate on self-structuring in the disk under the impact of the distribution of leading parameters (density, velocity ...). The paper is considering the problem of development of the corona and will analyze the process of interaction of the plasma with the magnetic field in connection to support for the instabilities.展开更多
文摘We study the stability of accretion disc around magnetised stars. Starting from the equations of magnetohydrodynamics we derive equations for linearized perturbation of geometrically thin, optically thick axisymmetric accretion disc with an internal dynamo around magnetized stars. The structure and evolution of such discs are governed by an evolution equation for matter surface density ∑(R,T). Using the time-dependent equations for an accretion disc we do a linear stability analysis of our steady disc solutions in the presence of the magnetic field generated due to an internal dynamo.
基金supported by Russian Foundation for Basic Research(project 18-02-01067)
文摘We simulate the dynamics of slender magnetic flux tubes (MFTs) in the accretion disks of T Tauri stars. The dynamical equations of our model take into account aerodynamic and turbulent drag forces, and the radiative heat exchange between the MFT and ambient gas. The structure of the disk is calculated with the help of our MHD model of the accretion disks. We consider the MFTs formed at distances of 0.027 - 0.8 au from the star with various initial radii and plasma betas β0. The simulations show that MFTs with a weak magnetic field (β0 = 10) rise slowly with speeds less than the speed of sound. MFTs withβ0 = 1 form an outflowing magnetized corona above the disk. Strongly magnetized MFTs (β0 = 0.1) can cause outflows with velocities 20 - 50 km s-1. The tubes rise periodically over times from several days to several months according to our simulations. We propose that periodically rising MFTs can absorb stellar radiation and contribute to the IR-variability of young stellar objects.
文摘Based on results obtained from the study for MHD (magneto-hydrodynamics) of advective accretion disk, which are applied to real source showing typical values for CBS (close binary star-system), it will investigate on self-structuring in the disk under the impact of the distribution of leading parameters (density, velocity ...). The paper is considering the problem of development of the corona and will analyze the process of interaction of the plasma with the magnetic field in connection to support for the instabilities.