期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genetic Analysis of Structural Styles in the Makran Accretionary Wedge–Insight from Physical Simulations
1
作者 SHAO Longfei YU Fusheng +6 位作者 GONG Jianming LIAO Jing YU Zhifeng TANG Liang CHEN Jiangong WANG Yuefeng NENG Yuan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期157-172,共16页
The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo... The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution. 展开更多
关键词 Makran accretionary wedge structural styles faults distribution physical simulation
下载PDF
Pore-water geochemistry in methane-seep sediments of the Makran accretionary wedge off Pakistan:Possible link to subsurface methane hydrate
2
作者 Xianrong Zhang Jianming Gong +6 位作者 Zhilei Sun Jing Liao Bin Zhai Libo Wang Xilin Zhang Cuiling Xu Wei Geng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第9期23-32,共10页
Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston ... Cold seeps are pervasive along the continental margin worldwide,and are recognized as hotspots for elemental cycling pathway on Earth.In this study,analyses of pore water geochemical compositions of one-400 cm piston core(S3)and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan.The results revealed that approximately 77%of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane.However,the estimated sulfate-methane interface depth is-400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m^(2)·a),suggesting the activity of methane seepage.Based on the δ^(13)C_(DIC) mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources,this study calculated the δ^(13)C of the exogenous methane to be-57.9‰,indicating that the exogenous methane may be a mixture source,including thermogenic and biogenic methane.The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area. 展开更多
关键词 Makran accretionary wedge methane-seep pore water geochemistry anaerobic oxidation of methane
下载PDF
The significance of cherts as markers of Ocean Plate Stratigraphy and paleoenvironmental conditions:New insights from the Neoproterozoic-Cambrian Blovice accretionary wedge,Bohemian Massif 被引量:1
3
作者 LukášAckerman Jirízák +5 位作者 Václav Kachlík Jan Pašava KarelZák Andreas Pack František Veselovsky Ladislav Strnad 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第1期162-180,共19页
The Ediacaran to early Cambrian Blovice accretionary complex,Bohemian Massif,hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana.Field re... The Ediacaran to early Cambrian Blovice accretionary complex,Bohemian Massif,hosts abundant chert bodies that formed on an oceanic plate and were involved in subduction beneath the northern margin of Gondwana.Field relationships of cherts to their host,their microstructure and elemental as well as isotopic compositions revealed diverse processes of chert petrogenesis reflecting depositional environment and position on the oceanic plate.The deep-water cherts formed through a hydrothermal precipitation of silica-rich gels on outer trench swell of the subducted slab with none or only minor addition of terrigenous material.On the contrary,the shallow-water cherts formed in lagoons on seamount slopes,and at least some of them represent a product of hydrothermal replacement of former carbonate and/or evaporite precursors.For both chert types,the hydrothermal fluids were of low temperature and continuous pervasive hydrothermal alteration of oceanic crust,together with an elevated Si content in Neoproterozoic seawater,served as the major source of silica.On the other hand,minor carbon enrichment in chert is mostly linked to variable incorporation of organic matter that was deposited on the seafloor.Rare earth element(REE)systematics of the cherts indicate predominantly oxygenated environment for the shallow-water cherts whereas the deep-water cherts were deposited in diverse redox conditions,depending on their distance from hydrothermal vent.Using these data,we demonstrate that the cherts once formed a part of Ocean Plate Stratigraphy(OPS)now dismembered and mixed with terrigenous siliciclastic material to form OPS mélanges.Combining our data with those from the existing literature,we show that cherts can serve as significant markers of OPS since the Archean,recording a complex interplay between seafloor-related volcanic(production of MORB-and OIB-like magmas)and sedimentary processes,hydrothermal activity at mid-ocean ridges and seamount chains as well as at outer slopes of subducting slabs.However,the cherts also exhibit a secular change in composition and petrogenesis most profoundly affected by an overturn in seawater silica cycle across the Precambrian-Phanerozoic boundary. 展开更多
关键词 Chert accretionary wedge EDIACARAN Triple oxygen isotopes Strontium isotopes Ocean Plate Stratigraphy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部