期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
1
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Texture evaluation in AZ31/AZ31 multilayer and AZ31/AA5068 laminar composite during accumulative roll bonding 被引量:2
2
作者 Pankaj Kumar Aviral Madhup +1 位作者 Prasad RKalvala Satyam Suwas 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期514-519,共6页
This article presents the texture development of magnesium AZ31 alloy in the accumulative roll bonded(ARB) AZ31/AZ31 multilayer and AZ31/AA5086 laminate composite.The comparative study demonstrates that the texture ev... This article presents the texture development of magnesium AZ31 alloy in the accumulative roll bonded(ARB) AZ31/AZ31 multilayer and AZ31/AA5086 laminate composite.The comparative study demonstrates that the texture evolution in AZ31 in a multilayer system is strongly influenced by the interfaces.A typical basal texture of AZ31 has been observed in AZ31/AZ31 multilayer with texture intensity increased with the rolling deformation.Presence of AZ31/AA5086 interface in the laminate composite leads to a tilted basal texture along the rolling direction(RD) in AZ31 alloy.The texture intensity of composite increased initially with rolling reduction and weakened at the higher rolling strain.Weakening of texture in AZ31 during the laminate processing at higher strain has been attributed to the development of wavy interfaces in AZ31/AA5086 laminate. 展开更多
关键词 accumulative roll bonding Defence application AZ31 alloy TEXTURE COMPOSITE LAMINATES
下载PDF
Microstructures and Mechanical Properties of Al/Mg Alloy Multilayered Composites Produced by Accumulative Roll Bonding 被引量:21
3
作者 H.S. Liu B. Zhang G.P. Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第1期15-21,共7页
Al/Mg alloy multilayered composites were produced successfully at the lower temperature(280 C) by accumulative roll bonding(ARB) processing technique.The microstructures of Al and Mg alloy layers were characterize... Al/Mg alloy multilayered composites were produced successfully at the lower temperature(280 C) by accumulative roll bonding(ARB) processing technique.The microstructures of Al and Mg alloy layers were characterized by scanning electron microscopy and transmission electron microscopy.Vickers hardness and three-point bending tests were conducted to investigate mechanical properties of the composites.It is found that Vickers hardness,bending strength and stiffness modulus of the Al/Mg alloy multilayered composite increase with increasing the ARB pass.Delamination and crack propagation along the interface are the two main failure modes of the multilayered composite subjected to bending load.Strengthening and fracture mechanisms of the composite are analyzed. 展开更多
关键词 accumulative roll bonding(ARB) Al/Mg alloy multilayered composite Ultra-fine grains HARDNESS Bending properties
原文传递
Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding 被引量:13
4
作者 Legan Hou Tianzi Wang +6 位作者 Ruizhi Wu Jinghuai Zhang Milin Zhang Anping Dong Baode Sun Sergey Betsofen Boris Krit 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期317-323,共7页
Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated... Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated. Results show that, during ARB process, the evolution of deformation mechanism oft Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy. 展开更多
关键词 Mg-Li alloy accumulative roll bonding Microstructure Mechanical property
原文传递
Influence of the Accumulative Roll Bonding Process Severity on the Microstructure and Superplastic Behaviour of 7075 Al Alloy 被引量:4
5
作者 R Hidalgo-Manrique A.Orozco-Caballero +2 位作者 C.M.Cepeda-Jimenez O.A.Ruano, F.Carreno 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期774-782,共9页
The 7075 Al alloy was processed by accumulative roll bonding (ARB) at 350 ℃ using 2:1, 3:1 and 4:1 thickness reductions per pass (Rp) up to 8, 6 and 3 passes, respectively. Microstructural examinations of the ... The 7075 Al alloy was processed by accumulative roll bonding (ARB) at 350 ℃ using 2:1, 3:1 and 4:1 thickness reductions per pass (Rp) up to 8, 6 and 3 passes, respectively. Microstructural examinations of the processed samples revealed that ARB leads to a microstructure composed of equiaxed crystallites with a mean size generally lower than 500 nm. It was found that, due to both the stored energy through- out the processing and the particle pinning effect, the alloy is affected by discontinuous recrystallisation during the inter-pass heating stages, the precise microstructural evolution being dependent on Rp. Me- chanical testing of the ARBed samples revealed that the main active deformation mechanism in the ARBed samples in the temperature range from 250 to 350 ℃ at intermediate and high strain rates is grain bound- ary sliding, the superplastic properties being determined by both the microstructure after ARB and its thermal stability. 展开更多
关键词 accumulative roll bonding (ARB) Al-Zn-Mg-Cn alloys Grain refining Precipitate coarsening Recrystallisation Superplastic deformation
原文传递
Fabrication of AZ31/Mg3Y Composites with Excellent Strength and Plasticity via Accumulated Rolling Bonding and Diffusion Annealing
6
作者 Yang Feng Wenhuan Chen +3 位作者 Zheng Xu Weijun He Bin Jiang Fusheng Pan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第2期339-352,共14页
AZ31/Mg3Y composites with a layer thickness of 100-200μm were fabricated by accumulated rolling bonding(ARB),which was followed by diffusion annealing at 300℃ for 0-32 h.An interface layer,containing numerous Al-Y p... AZ31/Mg3Y composites with a layer thickness of 100-200μm were fabricated by accumulated rolling bonding(ARB),which was followed by diffusion annealing at 300℃ for 0-32 h.An interface layer,containing numerous Al-Y precipitates,is formed in the Mg3Y layer that is adjacent to the interface as a result of Al diffusing from the AZ31 layers into the Mg3Y layers.The thickness of the interface layer gets increased and more precipitates are formed in the interface layer with the extension of the annealing time.The microhardness of the AZ31 and Mg3Y layer decreases firstly and then reaches a stable value,while the microhardness of the interface layer increases gradually with the extension of the annealing time.The AZ31/Mg3Y composites exhibit equivalent strength but increased ductility after diffusion annealing,in comparison to the as-rolled AZ31/Mg3Y composite.In addition,the AZ31/Mg3Y composites after annealing always present higher strength and ductility than AZ31/AZ31 composite,which was fabricated by the same process as that for the AZ31/Mg3Y composites.Hetero-deformation induced strengthening also plays an important role in the excellent strength and ductility of the annealed AZ31/Mg3Y composite.This study can provide a direction for improving the plasticity and strength of magnesium alloys synergistically. 展开更多
关键词 AZ31/Mg3Y composite Accumulated rolling bonding Diffusion annealing PRECIPITATES Strengthening
原文传递
Effect of whisker alignment on microstructure,mechanical and thermal properties of Mg-SiC_(w)/Cu composite fabricated by a combination of casting and severe plastic deformation(SPD) 被引量:2
7
作者 Yinwei Wang Moslem Tayyebi +3 位作者 Morteza Tayebi Mahdireza Yarigarravesh Shoufa Liu Hongwei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期966-980,共15页
In this research,microstructure evaluation,mechanical properties and thermal conductivity of the Mg-SiC_(w)/Cu composite with laminar structure were investigated.For this purpose,SiC whiskers were added to magnesium a... In this research,microstructure evaluation,mechanical properties and thermal conductivity of the Mg-SiC_(w)/Cu composite with laminar structure were investigated.For this purpose,SiC whiskers were added to magnesium alloy by using stir-casting,then the Mg-SiC_(w)composite was bonded to copper layers by warm accumulative roll bonding(ARB).Based on the results of optical microscopy(OM)and scanning electron microscopy(SEM),SiC whiskers were well distributed in the magnesium matrix and they were aligned parallelly when the composites were plastically deformed at higher rolling passes.Furthermore,all layers remained continuous with localized necking sites.Also,no intermetallic compounds and phases were detected by XRD and EDS analyzes.Apart from the significant effect of severe plastic deformation on mechanical properties,the findings of mechanical tests point to the usefulness of reinforcements in improving up to 60%microhardness,Young’s modulus,yield,and up to 41%tensile strengths.Further,thermal conductivities of composites increased by adding reinforcement and above all by increasing the number of rolling passes.This growth is attributed to the higher thermal diffusivity of copper and whiskers as well as the increased number of conductive layers within composite. 展开更多
关键词 SiC whisker Warm accumulative roll bonding Stir-casting Thermal conductivity
下载PDF
Improvement of the matrix and the interface quality of a Cu/Al composite by the MARB process 被引量:9
8
作者 XU Rongchang TANG Di REN Xueping WANG Xiaohong WEN Yonghong 《Rare Metals》 SCIE EI CAS CSCD 2007年第3期230-235,共6页
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of... The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well. 展开更多
关键词 matrix accumulative roll bonding Cu/Al composite material interface bonding diffusion annealing
下载PDF
Processing and characterization of the microstructure and mechanical properties of Al6061–TiB_(2) composite
9
作者 Y.Pazhuhanfar B.Eghbali 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第6期1080-1089,共10页
In the present research,aluminum metal matrix composites were processed by the stir casting technique.The effects of TiB2 reinforcement particles,severe plastic deformation through accumulative roll bonding(ARB),and a... In the present research,aluminum metal matrix composites were processed by the stir casting technique.The effects of TiB2 reinforcement particles,severe plastic deformation through accumulative roll bonding(ARB),and aging treatment on the microstructural characteristics and mechanical properties were also evaluated.Uniaxial tensile tests and microhardness measurements were conducted,and the microstructural characteristics were investigated.Notably,the important problems associated with cast samples,including nonuniformity of the reinforcement particles and high porosity content,were solved through the ARB process.At the initial stage,particle-free zones,as well as particle clusters,were observed on the microstructure of the composite.However,after the ARB process,fracturing phenomena occurred in brittle ceramic particles,followed by breaking down of the fragments into fine particles as the number of rolling cycles increased.Subsequently,composites with a uniform distribution of particles were produced.Moreover,the tensile strength and microhardness of the ARB-processed composites increased with the increase in the reinforcement mass fraction.However,their ductility exhibited a different trend.With post-deformation aging treatment(T6),the mechanical properties of composites were improved because of the formation of fine Mg2Si precipitates. 展开更多
关键词 stir casting accumulative roll bonding aging treatment mechanical properties microstructural characteristics TiB2 ceramic particle
下载PDF
Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (ARB) Cu-Nb nano-lamellar composites (NLC) 被引量:1
10
作者 Judy Schneider Josef Cobb +1 位作者 John S.Carpenter Nathan A.Mara 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期92-101,共10页
Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. ... Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels. 展开更多
关键词 Nano-lamellar materials accumulative roll bonded Cu-Nb FSW Solid state joining
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部