Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rende...Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rendezvous problem. The velocity gain guidance is applied to the first maneuver and the time-cut-off law is applied to the second one. Theoretical and simulation results show that the plan is credible. Accuracy requirements in fardistance rendezvous and in transform to close-in rendezous can be met.展开更多
The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means...The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means of simulation, it is concluded that the guidance accuracy is mainly determined by the slowest subsystem among different system dynamics. For air-to-ground missiles, with limited terminal guidance time, the control scheme of acceleration autopilot combined with proportional navigation guidance (PNG) law is the better choice.展开更多
文摘Using impulse hypothesis to solve far-distance rendezvous is difficult to be realized in a real project and the guidance accuracy cannot be controlled. A two-maneuver guidance law is designed for the two-impulse rendezvous problem. The velocity gain guidance is applied to the first maneuver and the time-cut-off law is applied to the second one. Theoretical and simulation results show that the plan is credible. Accuracy requirements in fardistance rendezvous and in transform to close-in rendezous can be met.
文摘The dynamic characteristics of acceleration autopilot and attitude autopilot are discu.ssed in detail. Also, a comparison study was made between these two different types of control schemes for guidance loop. By means of simulation, it is concluded that the guidance accuracy is mainly determined by the slowest subsystem among different system dynamics. For air-to-ground missiles, with limited terminal guidance time, the control scheme of acceleration autopilot combined with proportional navigation guidance (PNG) law is the better choice.