Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various lim...Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization.This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.Recent studies and a detailed case report highlight the efficacy of acellular fish skin grafts in accelerating wound closure,reducing dressing changes,and enhancing patient outcomes with a lower socio-economic burden.Despite their promise,challenges such as limited availability,patient acceptance,and the need for further research persist.Addressing these through more extensive randomized controlled trials and fostering a multidisciplinary treatment approach may optimize DFU care and reduce the global health burden associated with these complex wounds.展开更多
Recently the use of biologic materials as dura mater repair patches has been increasing. The purpose of this study is to assess the basis for efficacy and safety of using a novel fish derived acellular dermis (Kerecis...Recently the use of biologic materials as dura mater repair patches has been increasing. The purpose of this study is to assess the basis for efficacy and safety of using a novel fish derived acellular dermis (Kerecis Omega3 DuraTM). In an ovine model a craniotomy under general anaesthesia was performed. A defect was produced in the dural covering of approximately 1 × 2 cm and closed with an onlay technique, with Kerecis Omega3 Dura. The bone defect was covered with the bony flap and the overlying tissues closed in layers. At 2, 5, 8 and 11 weeks the sheep underwent MRI scanning followed by euthanasia, necropsy and histological assessment. MRI images taken at 2, 5, 8 and 11 weeks showed initially moderate inflammatory response, which diminished over time, and at 11 weeks no evidence of inflammation existed. There was evidence of cerebrospinal fluid leakage at no time point. Necropsy revealed some adhesions at 5 and 8 weeks, in particular at 5 weeks, but at 11 weeks there were no adhesions found. From 2 - 11 weeks, there was evidence of initially an inflammatory reaction followed by neodura formation at the defect site through cellular ingrowth and remodeling of the acellular fish skin. Histology showed a histiocytic foreign body reaction initially that subsided over time. As early as 8 weeks there was evidence of neodura formation and by 11 weeks there was a minimal inflammatory response with an intact neodura formed. In this pilot study the Kerecis Omega3 Dura patches performed in a safe and efficacious manner. This new material needs to be fully assessed and compared with other products that are currently on the market in a larger scale animal study.展开更多
基金Supported by the Zhejiang Medical Technology Project,No.2022RC009 and No.2024KY645.
文摘Diabetic foot ulcers(DFUs)represents a significant public health issue,with a rising global prevalence and severe potential complications including amputation.Traditional treatments often fall short due to various limitations such as high recurrence rates and extensive resource utilization.This editorial explores the innovative use of acellular fish skin grafts as a transformative approach in DFU management.Recent studies and a detailed case report highlight the efficacy of acellular fish skin grafts in accelerating wound closure,reducing dressing changes,and enhancing patient outcomes with a lower socio-economic burden.Despite their promise,challenges such as limited availability,patient acceptance,and the need for further research persist.Addressing these through more extensive randomized controlled trials and fostering a multidisciplinary treatment approach may optimize DFU care and reduce the global health burden associated with these complex wounds.
文摘Recently the use of biologic materials as dura mater repair patches has been increasing. The purpose of this study is to assess the basis for efficacy and safety of using a novel fish derived acellular dermis (Kerecis Omega3 DuraTM). In an ovine model a craniotomy under general anaesthesia was performed. A defect was produced in the dural covering of approximately 1 × 2 cm and closed with an onlay technique, with Kerecis Omega3 Dura. The bone defect was covered with the bony flap and the overlying tissues closed in layers. At 2, 5, 8 and 11 weeks the sheep underwent MRI scanning followed by euthanasia, necropsy and histological assessment. MRI images taken at 2, 5, 8 and 11 weeks showed initially moderate inflammatory response, which diminished over time, and at 11 weeks no evidence of inflammation existed. There was evidence of cerebrospinal fluid leakage at no time point. Necropsy revealed some adhesions at 5 and 8 weeks, in particular at 5 weeks, but at 11 weeks there were no adhesions found. From 2 - 11 weeks, there was evidence of initially an inflammatory reaction followed by neodura formation at the defect site through cellular ingrowth and remodeling of the acellular fish skin. Histology showed a histiocytic foreign body reaction initially that subsided over time. As early as 8 weeks there was evidence of neodura formation and by 11 weeks there was a minimal inflammatory response with an intact neodura formed. In this pilot study the Kerecis Omega3 Dura patches performed in a safe and efficacious manner. This new material needs to be fully assessed and compared with other products that are currently on the market in a larger scale animal study.