The volatile compounds from ash-leaf maple (Acer negundo L.) were examined by adsorption-thermodesorption and GC-MS. Thirty-two compounds, including alcohols, ketones, aldehydes, esters, terpenoids, carboxylic acids, ...The volatile compounds from ash-leaf maple (Acer negundo L.) were examined by adsorption-thermodesorption and GC-MS. Thirty-two compounds, including alcohols, ketones, aldehydes, esters, terpenoids, carboxylic acids, etc. were identified. The analysis revealed that the diurnal rhythm of release of volatile compounds from maple differed in July and in August. In July, the releasing of most volatile compounds reached the peak at 14 o'clock, when in August, the emission of volatile compounds reached the peak at 10 o'clock. Besides diurnal rhythm, there also existed other differences in the releasing of volatiles and their relative contents in July and in August. A possible explanation for this phenomenon is the maturation of leaves, since the sampling conditions were the same both in July and August. At the same time, the response of Anoplophora glabrpennis Motschulsky to volatiles was examined with field bioassay with traps. cis-3-hexen-1-ol was found to be more effective to attract A. glabrpennis than other volatiles released by ash-leaf maple tree in field trapping test. A mixture of 1-butanol, 1-pentanol and 2-pentanol was tested to be the most attractive to A. glabripennis among all tested volatiles. More field trapping tests should be conducted.展开更多
One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moistu...One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.展开更多
[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncat...[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncatum ‘Luhong No.1' cultivar was used as the material for cloning the MYB gene by mean of RTPCR and RACE-PCR. [Results] Sequence analysis showed that the fragment contained a full coding region of 831 bp encoding 276 amino acid residues with a molecular weight of 32.17 kD and a molecular formula C_(1430)H_(14052)N_(2247)O_(406)S_(14). The gene was named as AtrMYB with a Gen Bank accession number of 1825712. This coded protein had apI of 9.44. The results showed that the AtrMYB exhibited typical features of the R2R3-MYB domain. The AtrMYB was highly homologous with the MYB of other species at nucleotide and amino acid levels. The AtrMYB had no signal peptide, but a nuclear localization signal. The phylogenetic tree showed that the AtrMYB was at the same clade as the MYB from Citrus sinensis. [Conclusion] The AtrMYB was cloned from Acer truncatum ‘Luhong No.1' cultivar. These results have provided a foundation for further purification and identification of target protein and function study of the AtrMYB.展开更多
文摘The volatile compounds from ash-leaf maple (Acer negundo L.) were examined by adsorption-thermodesorption and GC-MS. Thirty-two compounds, including alcohols, ketones, aldehydes, esters, terpenoids, carboxylic acids, etc. were identified. The analysis revealed that the diurnal rhythm of release of volatile compounds from maple differed in July and in August. In July, the releasing of most volatile compounds reached the peak at 14 o'clock, when in August, the emission of volatile compounds reached the peak at 10 o'clock. Besides diurnal rhythm, there also existed other differences in the releasing of volatiles and their relative contents in July and in August. A possible explanation for this phenomenon is the maturation of leaves, since the sampling conditions were the same both in July and August. At the same time, the response of Anoplophora glabrpennis Motschulsky to volatiles was examined with field bioassay with traps. cis-3-hexen-1-ol was found to be more effective to attract A. glabrpennis than other volatiles released by ash-leaf maple tree in field trapping test. A mixture of 1-butanol, 1-pentanol and 2-pentanol was tested to be the most attractive to A. glabripennis among all tested volatiles. More field trapping tests should be conducted.
基金This study was supported by Science and Technology Program of Heilongjiang Province (GC01KB213), and the Quick Response of Basic Research Supporting Program (2001CCB00600)
文摘One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.
基金Supported by Agricultural Elite Cultivar Project of Shandong Province(lkz2014[96])~~
文摘[Objective] Cloning of the AtrMYB transcription factor gene from Acer truncatum was conducted to further explore the red leaf development mechanism and breed cultivars of colored-leaf maple. [Method] The Acer truncatum ‘Luhong No.1' cultivar was used as the material for cloning the MYB gene by mean of RTPCR and RACE-PCR. [Results] Sequence analysis showed that the fragment contained a full coding region of 831 bp encoding 276 amino acid residues with a molecular weight of 32.17 kD and a molecular formula C_(1430)H_(14052)N_(2247)O_(406)S_(14). The gene was named as AtrMYB with a Gen Bank accession number of 1825712. This coded protein had apI of 9.44. The results showed that the AtrMYB exhibited typical features of the R2R3-MYB domain. The AtrMYB was highly homologous with the MYB of other species at nucleotide and amino acid levels. The AtrMYB had no signal peptide, but a nuclear localization signal. The phylogenetic tree showed that the AtrMYB was at the same clade as the MYB from Citrus sinensis. [Conclusion] The AtrMYB was cloned from Acer truncatum ‘Luhong No.1' cultivar. These results have provided a foundation for further purification and identification of target protein and function study of the AtrMYB.