期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Boosting Achene Yield and Yield Related Traits of Sunflower Hybrids through Boron Application Strategies
1
作者 Imran Khan Shakeel Ahmad Anjum +3 位作者 Rashad Waseem Khan Qardri Muqarrab Ali Muhammad Umer Chattha Muhammad Asif 《American Journal of Plant Sciences》 2015年第11期1752-1759,共8页
Effects of different boron (B) application methods on growth and yield of sunflower hybrids were checked out at Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan during spring, 2013. Field exper... Effects of different boron (B) application methods on growth and yield of sunflower hybrids were checked out at Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan during spring, 2013. Field experiment was conducted by considering three sunflower hybrids viz., Patron 551, Patron 851 and S-278 along with different methods of B application i.e. no B application, seed treatment @ 0.05% B, soil B application @ 2 kg·ha-1 at sowing, soil B application @ 2 kg·ha-1 at ray floret stage and foliar application of B @ 200 mg·L-1 at ray floret stage. Uttermost plant height (150.78 cm), the number of leaves per plant (22.67) and stem diameter (1.62 cm) were accomplished when boron was soil applied @ 2 kg·ha-1 at sowing. Significantly higher head diameter (18.30 cm), number of achene per head (1266.44), 1000-achene weight (43.17 g) achene yield (2039.33 kg·ha-1), biological yield (9223.11 kg·ha-1) and harvest index (22.10%) were registered when boron was foliar applied @ 200 mg·L-1 at ray floret stage. Among sunflower hybrids, Patron 551 produced significantly higher growth and yield attributes as compared with Patron 851 and S-278 hybrids. This study suggested that the selection of Patron 551 hybrid with practicing boron foliar application @ 200 mg·L-1 at ray floret stage could be helpful in achieving the sunflower crop genetic potential. 展开更多
关键词 BORON Application Methods SUNFLOWER HYBRIDS Biological yield achene yield growth and yield attributes
下载PDF
Triple Cropping Systems of Spring Maize, Tropical Grass of Teff (<i>Eragrostis tef</i>) and Winter Cereal Crops to Combine Total Digestible Nutrient Yield with Protein Concentration in Southern Kyushu, Japan
2
作者 Yukimi Nakata Sachiko Idota +1 位作者 Manabu Tobisa Yasuyuki Ishii 《Agricultural Sciences》 2018年第1期129-140,共12页
It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter gr... It is ordinarily common for forage production in southern Kyushu to adopt a double cropping system, composed of summer forage crops (e.g. maize and sorghum) cultivated from late March to early September, and winter grass crops (e.g. Italian ryegrass (IR) and oat) from mid-October to the following May. However, if high total digestible nutrient (TDN) production is aimed to introduce winter cereal crops (e.g. wheat and barley) as a replacement of IR, it is necessary to cultivate tropical grass, which has a rapid-growth potential with high crude protein (CP) concentration in a switching period between summer and winter crops. In this study, teff (Eragrostis tef) was tried to evaluate as a candidate crop in the switching period. Yield and quality of two types of triple forage cropping system were determined under maize-teff-barley and maize-teff-wheat in the first and second year, respectively. Compared with the normal year, summer temperature was higher and summer and winter precipitations were lower in the first year, while no climatic disorder was observed in the second year. Even though dry matter yield of teff was minimal in the present system due to weed damage, CP concentration was the highest among crops and TDN yields of the present cropping system tended to be higher in the second year with no drought stress than in the conventional maize-IR system in the region. 展开更多
关键词 Cropping System Dry Matter yield ERAGROSTIS TEF Forage Quality growth Attribute
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部