Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed...Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.展开更多
The molecular transformations of carboxylic acids in heavy acidic SL crude before and after true boiling point distillation were examined by ultra-high resolution negative-ion electrospray ionization(ESI) Fourier tran...The molecular transformations of carboxylic acids in heavy acidic SL crude before and after true boiling point distillation were examined by ultra-high resolution negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). The acid class(heteroatom number), type(z numbers) and carbon number distributions were positively characterized. It was found out that the total acid number(TAN) of SL crude decreased after true boiling point distillation, and the abundance of O2 class in mass spectra was also found to be reduced from 67.6% to 34.5% in SL TBP mixed crude as measured by MS spectra, indicating to a potential carboxylic acid decomposition. However, it was interesting that the carboxylic acids type distribution in both oils was almost the same although their relative abundance in SL TBP mixed crude turned to be much lower, suggesting that various petroleum carboxylic acid types have the similar thermal decomposition reaction behavior. Furthermore, for each O2 type of acids in SL TBP mixed crude, the abundance of carboxylic acids with carbon number higher than 35 was reduced greatly, especially for those with carbon number higher than 60, the mass peaks of which were nearly totally removed, indicating that the large carboxylic acid molecules in heavy fractions decomposed more significantly because of longer heating time during the true boiling point distillation process. As a result, the reduction of TAN may be caused by the thermal decomposition of carboxylic acids especially those with high carbon number, suggesting that quick distillation or much lower pressure is required to avoid the thermal decomposition.展开更多
High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources ...High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources in the 21st century.Researches on high acidity crude oils are becoming more and more profound.Based on the existing research achievements,this article has given an overview of the chemical composition and acid distribution of high acidity oils,and also analyzed their origin types and potential influence factors.展开更多
Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetabl...Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].展开更多
Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,...Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.展开更多
Lactic acid bacteria have not only been used to produce various kinds of fermented food, but also used as probiotic products. As lactic acid bacterial group was consisted from diverse genera, a simple inspection metho...Lactic acid bacteria have not only been used to produce various kinds of fermented food, but also used as probiotic products. As lactic acid bacterial group was consisted from diverse genera, a simple inspection method by which numbers and contained microorganisms could be automatically analyzed without any preliminary information was required to use them more effectively. In this manuscript, lactic acid bacterial groups in commercial products of kimuchi, komekouji-miso, and yoghurt were identified and enumerated by our newly developed method [1]-[3], to evaluate whether the method could be used as an inspection method of various food samples. In kimuchi, numerically dominant bacteria were Lactobacillus sakei, and L. casei (1.4 × 104 MPN g<sup>-1</sup>) and Leuconostoc spp. (l.4 × 104 MPN). In kouji-miso, numerically dominant bacteria was Bacillus spp. (3 × 103 MPN), which mainly included B. subtilis group and B. cereus group. Lactic acid bacteria such as Lactobacillus spp., or Lactococcus spp., included in the komekouji-miso, could be enumerated after 3 days incubation (1.24 × 104 MPN), but not detected after 7 days incubation. In yoghurt A and C, Lactococcus lactis was detected as numerically dominant lactic acid bacteria (3.0 × 105 MPN). In yoghurt B, Lactobacillus spp., or Lactococcus spp., was detected not only by a culturebased method but also by an unculture-based method, although there was a difference between the both estimated numbers. The present results suggested that the method might become useful as a simple inspection method of food microorganisms, because time and labor of the analysis could be reduced by using an unculture-based method and MCE-202 MultiNA. In this study, Bifidobacteriium spp. was not detected in B and C yoghurt, in spite of indicating their existence, and numbers of lactic acid bacteria were lower than the level of the daily product regulation, because 16S rDNA of Bifidobacteriium spp. might not be amplified by the used PCR condition. The PCR condition must be changed so as to amplify Bifidobacterium spp., before the method will be used as an inspection method for lactic acid bacteria.展开更多
文摘Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.
基金financially supported by the National Key Basic Research Development Program "973" Project (2006CB202501)
文摘The molecular transformations of carboxylic acids in heavy acidic SL crude before and after true boiling point distillation were examined by ultra-high resolution negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). The acid class(heteroatom number), type(z numbers) and carbon number distributions were positively characterized. It was found out that the total acid number(TAN) of SL crude decreased after true boiling point distillation, and the abundance of O2 class in mass spectra was also found to be reduced from 67.6% to 34.5% in SL TBP mixed crude as measured by MS spectra, indicating to a potential carboxylic acid decomposition. However, it was interesting that the carboxylic acids type distribution in both oils was almost the same although their relative abundance in SL TBP mixed crude turned to be much lower, suggesting that various petroleum carboxylic acid types have the similar thermal decomposition reaction behavior. Furthermore, for each O2 type of acids in SL TBP mixed crude, the abundance of carboxylic acids with carbon number higher than 35 was reduced greatly, especially for those with carbon number higher than 60, the mass peaks of which were nearly totally removed, indicating that the large carboxylic acid molecules in heavy fractions decomposed more significantly because of longer heating time during the true boiling point distillation process. As a result, the reduction of TAN may be caused by the thermal decomposition of carboxylic acids especially those with high carbon number, suggesting that quick distillation or much lower pressure is required to avoid the thermal decomposition.
文摘High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources in the 21st century.Researches on high acidity crude oils are becoming more and more profound.Based on the existing research achievements,this article has given an overview of the chemical composition and acid distribution of high acidity oils,and also analyzed their origin types and potential influence factors.
文摘Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].
文摘Amino acids are the building blocks of proteins,which are the most abundant macromolecules in living cells.From the standpoint of the photon interaction cross sections of amino acids,the mass attenuation coefficients,half and tenth value layers,mean free path,effective atomic and electronic cross sections,effective atomic number,and effective electron density of fifteen essential amino acids have been determined for 133Ba,137Cs,and 60Co gamma-ray sources.The MCNP-4C code and the XCOM program have been used to calculate these parameters.The results have been compared to the available experimental and theoretical data.The theoretical results agreed with the experimental data,with RD values of ≤±7%.In the energy region of 81-1332.5 keV,it was found that the μm,σa,and revalues of the amino acids decreased as the photon energy increased,and the increasing density of amino acids had no steady effect on these quantities.Additionally,results demonstrated that the HVL,TVL,and MFP values increased with the increase in photon energy.The μm,σa,and Zeff values of aspartic acid were the highest among those of all amino acids,and they were the lowest for isoleucine.The Zeff value of each sample containing H,C,N,and O atoms was nearly constant in the studied energy region.The Neffvalues of the studied amino acids varied in the range of 3.14×10^23-3.44×10^23 electron/g.Furthermore,the Neffvalues were approximately independent of the amino acid type in this energy region.
文摘Lactic acid bacteria have not only been used to produce various kinds of fermented food, but also used as probiotic products. As lactic acid bacterial group was consisted from diverse genera, a simple inspection method by which numbers and contained microorganisms could be automatically analyzed without any preliminary information was required to use them more effectively. In this manuscript, lactic acid bacterial groups in commercial products of kimuchi, komekouji-miso, and yoghurt were identified and enumerated by our newly developed method [1]-[3], to evaluate whether the method could be used as an inspection method of various food samples. In kimuchi, numerically dominant bacteria were Lactobacillus sakei, and L. casei (1.4 × 104 MPN g<sup>-1</sup>) and Leuconostoc spp. (l.4 × 104 MPN). In kouji-miso, numerically dominant bacteria was Bacillus spp. (3 × 103 MPN), which mainly included B. subtilis group and B. cereus group. Lactic acid bacteria such as Lactobacillus spp., or Lactococcus spp., included in the komekouji-miso, could be enumerated after 3 days incubation (1.24 × 104 MPN), but not detected after 7 days incubation. In yoghurt A and C, Lactococcus lactis was detected as numerically dominant lactic acid bacteria (3.0 × 105 MPN). In yoghurt B, Lactobacillus spp., or Lactococcus spp., was detected not only by a culturebased method but also by an unculture-based method, although there was a difference between the both estimated numbers. The present results suggested that the method might become useful as a simple inspection method of food microorganisms, because time and labor of the analysis could be reduced by using an unculture-based method and MCE-202 MultiNA. In this study, Bifidobacteriium spp. was not detected in B and C yoghurt, in spite of indicating their existence, and numbers of lactic acid bacteria were lower than the level of the daily product regulation, because 16S rDNA of Bifidobacteriium spp. might not be amplified by the used PCR condition. The PCR condition must be changed so as to amplify Bifidobacterium spp., before the method will be used as an inspection method for lactic acid bacteria.