Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been repor...Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been reported to mediate the endocytosis and maturation of bone marrow derived macrophages. However, the expression and inflammation-related functions of ASICs in RAW 264.7 cells, another common macrophage, are still elusive. In the present study, we first demonstrated the presence of ASIC 1, ASIC2a and ASIC3 in RAW 264.7 macrophage cell line by using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence experiments. The non-specific ASICs inhibitor amiloride and specific homomeric ASICla blocker PcTxl reduced the production of iNOS and COX-2 by LPS-induced activating RAW 264.7 cells. Furthermore, not only amiloride but also PcTxl inhibited the migration and LPS-induced apoptosis of RAW 264.7 cells. Taken together, our findings suggest that ASICs promote the inflammatory response and apoptosis of RAW 264.7 cells, and ASICs may serve as a potential novel target for immunological disease therapy.展开更多
Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain a...Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/I expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.展开更多
Objective To re-confirm and characterize the biophysical and pharmacological properties of endogenously expressed human acid-sensing ion channel 1a (hASIC1a) current in HEK293 cells with a modified perfusion methods...Objective To re-confirm and characterize the biophysical and pharmacological properties of endogenously expressed human acid-sensing ion channel 1a (hASIC1a) current in HEK293 cells with a modified perfusion methods. Methods With cell floating method, which is separating the cultured cell from coverslip and putting the cell in front of perfusion tubing, whole cell patch clamp technique was used to record hASICla currents evoked by low pH external solution. Results Using cell floating method, the amplitude of hASICla currents activated by pH 5.0 in HEK293 cells is twice as large as that by the conventional method where the cells remain attached to coverslip. The time to reach peak at two different recording conditions is (21±5) ms and (270±25) ms, respectively. Inactivation time constants are (496±23) ms and (2284±120) ms, respectively. The cell floating method significantly increases the amiloride potency of block on hASIC 1 a [IC50 is (3.4± 1.1 ) μmol/L and (2.4± 0.9) μmol/L, respectively]. Both recording methods have similar pH activation ECs0 (6.6±0.6, 6.6±0.7, respectively). Conclusion ASICs channel activation requires fast exchange of extracellular solution with the different pH values. With cell floating method, the presence of hASIC la current was re-confirmed and the biophysical and pharmacological properties of hASIC la channel in HEK293 cells was precisely characterized. This method could be used to study all ASICs and other ligand-gated channels that require fast extracellular solution exchange.展开更多
In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space ...In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space (SRS) under pathological conditions such as age-related macular degeneration (AMD). Although it is well known that many transporters in the retinal pigment epithelium (RPE) cells can maintain pH homeostasis efficiently, other receptors in RPE may also be involved in sensing acidosis, such as acid-sensing ion channels (ASICs). In this study, we investigated whether ASICla was ex- pressed in the RPE cells and whether it was involved in the function of these cells. Real-time RT-PCR and Western blotting were used to analyze the ASICla expression in ARPE-19 cells during oxidative stress induced by hydrogen peroxide (H202). Furthermore, inhibition or over-expression of ASICla in RPE cells was obtained using inhibitors (amiloride and PCTxl) or by the transfection of cDNA encod- ing hASICla. Cell viability was determined by using the MTT assay. The real-time RT-PCR and West- ern blotting results showed that both the mRNA and protein of ASICla were expressed in RPE cells. In- hibition of ASICs by amiloride in normal RPE cells resulted in cell death, indicating that ASICs play an important physiological role in RPE cells. Furthermore, over-expression of ASICla in RPE cells pro- longed cell survival under oxidative stress induced by H2O2. In conclusion, ASICla is functionally expressed in RPE cells and may play an important role in the physiological function of RPE cells by pro-tecting them from oxidative stress.展开更多
Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain isch...Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.展开更多
Acidosis in local environment plays a critical role in cell injury. One key mediator of acidosis-induced cell injury is the acid-sensing ion channels (ASICs), particularly ASIC1a. Herein, we investigated the role of A...Acidosis in local environment plays a critical role in cell injury. One key mediator of acidosis-induced cell injury is the acid-sensing ion channels (ASICs), particularly ASIC1a. Herein, we investigated the role of ASIC1a in acid-induced vascular endothelial cell injury of Henoch-Schonlein purpura (HSP) children. Acid-induced ASIC1a, Calpain and Calcineurin expression in vascular endothelial cells pretreated with IgA1 isolated from HSP were detected by real time quantitative polymerase chain reaction and western blot methods, respectively. Cell cytotoxicity was measured by interleukin-8 and nitric oxide production with ELISA. The results showed acid-induced ASIC1a, Calpain and Calcineurin expression in cells increased, especially at PH6.5. The cytotoxicity of vascular endothelial cells was increased by extracellular acidosis. Moreover non-specific or specific blockers of ASIC1a, Amiloride and PcTX-1 could remarkably decrease these parameters. These findings show that increased [Ca<sup>2+</sup>]i, mediated via ASIC1a, might contribute to acid-induced vascular endothelial cell injury of HSP.展开更多
目的探讨幽门螺杆菌(Helicobacter pylori,Hp)感染患儿胃黏膜中酸敏感离子通道(acid-sensing ion channels,ASICs)的表达及其在Hp感染胃炎胃肠功能中的作用。方法将22例经内镜诊断的胃炎患者分为幽门螺杆菌阳性组[Hp(+),n=11]和阴性组[H...目的探讨幽门螺杆菌(Helicobacter pylori,Hp)感染患儿胃黏膜中酸敏感离子通道(acid-sensing ion channels,ASICs)的表达及其在Hp感染胃炎胃肠功能中的作用。方法将22例经内镜诊断的胃炎患者分为幽门螺杆菌阳性组[Hp(+),n=11]和阴性组[Hp(-),n=11]。免疫化学法检测胃炎患儿胃黏膜中ASICs的表达和定位。ELISA法测定血清CCK、SP、GAS和MTL水平。采用Pearson相关性分析ASIC3表达与胃肠道激素的相关性。结果 Hp感染患者胃黏膜ASIC3表达明显升高,血清CCK、SP、MTL水平明显升高。血清CCK、SP、MTL水平与ASIC3表达密切相关。结论 Hp可诱导胃黏膜ASIC3的表达,其影响Hp感染患者的胃肠激素分泌和胃肠功能。展开更多
The locus coeruleus(LC) is one of the essential chemoregulatory and sleep–wake(S–W) modulating centers in the brain. LC neurons remain highly active during wakefulness, and some implicitly become silent during rapid...The locus coeruleus(LC) is one of the essential chemoregulatory and sleep–wake(S–W) modulating centers in the brain. LC neurons remain highly active during wakefulness, and some implicitly become silent during rapid eye movement(REM) sleep. LC neurons are also involved in CO_2-dependent modulation of the respiratory drive. Acid-sensing ion channels(ASICs) are highly expressed in some brainstem chemosensory breathing regulatory areas, but their localization and functions in the LC remain unknown. Mild hypercapnia increases the amount of non-REM(NREM) sleep and the number of REM sleep episodes, but whether ASICs in the LC modulate S–W is unclear. Here, we investigated the presence of ASICs in the LC and their role in S–W modulation and the state transition from NREM to REM sleep. Male Wistar rats were surgically prepared for chronic polysomnographic recordings and drug microinjections into the LC. The presence of ASIC-2 and ASIC-3 in the LC was immunohistochemically characterized.Microinjections of amiloride(an ASIC blocker) and APETx2(a blocker of ASIC-2 and-3) into the LC significantly decreased wakefulness and REM sleep, but significantly increased NREM sleep. Mild hypercapnia increased the amount of NREM and the number of REM episodes. However, APETx2 microinjection inhibited this increase in REM frequency. These results suggest that the ASICs of LC neurons modulate S–W, indicating that ASICs could play an important role in vigilance-state transition. A mild increase in CO_2 level during NREM sleep sensed by ASICs could be one of the determinants of state transition from NREM to REM sleep.展开更多
基金This work was supported by grants from the National Natural science Foundation of China (No. 81473199), and the Fundamental Research Funds for the Central Universities (No, 015TS 125).
文摘Activation of acid-sensing ion channels (ASICs) plays an important role in neuroinflammation. Macrophage recruitment to the sites of inflammation is an essential step in host defense. ASIC1 and ASIC3 have been reported to mediate the endocytosis and maturation of bone marrow derived macrophages. However, the expression and inflammation-related functions of ASICs in RAW 264.7 cells, another common macrophage, are still elusive. In the present study, we first demonstrated the presence of ASIC 1, ASIC2a and ASIC3 in RAW 264.7 macrophage cell line by using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence experiments. The non-specific ASICs inhibitor amiloride and specific homomeric ASICla blocker PcTxl reduced the production of iNOS and COX-2 by LPS-induced activating RAW 264.7 cells. Furthermore, not only amiloride but also PcTxl inhibited the migration and LPS-induced apoptosis of RAW 264.7 cells. Taken together, our findings suggest that ASICs promote the inflammatory response and apoptosis of RAW 264.7 cells, and ASICs may serve as a potential novel target for immunological disease therapy.
基金supported by the National Natural Science Foundation of China,No.30872665
文摘Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/I expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.
文摘Objective To re-confirm and characterize the biophysical and pharmacological properties of endogenously expressed human acid-sensing ion channel 1a (hASIC1a) current in HEK293 cells with a modified perfusion methods. Methods With cell floating method, which is separating the cultured cell from coverslip and putting the cell in front of perfusion tubing, whole cell patch clamp technique was used to record hASICla currents evoked by low pH external solution. Results Using cell floating method, the amplitude of hASICla currents activated by pH 5.0 in HEK293 cells is twice as large as that by the conventional method where the cells remain attached to coverslip. The time to reach peak at two different recording conditions is (21±5) ms and (270±25) ms, respectively. Inactivation time constants are (496±23) ms and (2284±120) ms, respectively. The cell floating method significantly increases the amiloride potency of block on hASIC 1 a [IC50 is (3.4± 1.1 ) μmol/L and (2.4± 0.9) μmol/L, respectively]. Both recording methods have similar pH activation ECs0 (6.6±0.6, 6.6±0.7, respectively). Conclusion ASICs channel activation requires fast exchange of extracellular solution with the different pH values. With cell floating method, the presence of hASIC la current was re-confirmed and the biophysical and pharmacological properties of hASIC la channel in HEK293 cells was precisely characterized. This method could be used to study all ASICs and other ligand-gated channels that require fast extracellular solution exchange.
基金supported by the National Natural Science Foundation of China (No. 81200681)
文摘In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space (SRS) under pathological conditions such as age-related macular degeneration (AMD). Although it is well known that many transporters in the retinal pigment epithelium (RPE) cells can maintain pH homeostasis efficiently, other receptors in RPE may also be involved in sensing acidosis, such as acid-sensing ion channels (ASICs). In this study, we investigated whether ASICla was ex- pressed in the RPE cells and whether it was involved in the function of these cells. Real-time RT-PCR and Western blotting were used to analyze the ASICla expression in ARPE-19 cells during oxidative stress induced by hydrogen peroxide (H202). Furthermore, inhibition or over-expression of ASICla in RPE cells was obtained using inhibitors (amiloride and PCTxl) or by the transfection of cDNA encod- ing hASICla. Cell viability was determined by using the MTT assay. The real-time RT-PCR and West- ern blotting results showed that both the mRNA and protein of ASICla were expressed in RPE cells. In- hibition of ASICs by amiloride in normal RPE cells resulted in cell death, indicating that ASICs play an important physiological role in RPE cells. Furthermore, over-expression of ASICla in RPE cells pro- longed cell survival under oxidative stress induced by H2O2. In conclusion, ASICla is functionally expressed in RPE cells and may play an important role in the physiological function of RPE cells by pro-tecting them from oxidative stress.
文摘Ischemic postconditioning renders brain tissue tolerant to brain ischemia,thereby alleviating ischemic brain injury.However,the exact mechanism of action is still unclear.In this study,a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method.After 2 hours of ischemia,the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds.This procedure was repeated six times.Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia,and up-regulate acid-sensing ion channel 2a expression at the m RNA and protein level.These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia,which promotes neuronal tolerance to ischemic brain injury.
文摘Acidosis in local environment plays a critical role in cell injury. One key mediator of acidosis-induced cell injury is the acid-sensing ion channels (ASICs), particularly ASIC1a. Herein, we investigated the role of ASIC1a in acid-induced vascular endothelial cell injury of Henoch-Schonlein purpura (HSP) children. Acid-induced ASIC1a, Calpain and Calcineurin expression in vascular endothelial cells pretreated with IgA1 isolated from HSP were detected by real time quantitative polymerase chain reaction and western blot methods, respectively. Cell cytotoxicity was measured by interleukin-8 and nitric oxide production with ELISA. The results showed acid-induced ASIC1a, Calpain and Calcineurin expression in cells increased, especially at PH6.5. The cytotoxicity of vascular endothelial cells was increased by extracellular acidosis. Moreover non-specific or specific blockers of ASIC1a, Amiloride and PcTX-1 could remarkably decrease these parameters. These findings show that increased [Ca<sup>2+</sup>]i, mediated via ASIC1a, might contribute to acid-induced vascular endothelial cell injury of HSP.
基金supported by the Department of Science and Technology-Cognitive Science Initiative project funded to Sushil K Jhasupport from Department of Biotechnology (DBT), Department of Science and Technology(PURSE), Universities for Potential of Excellence (UPOE Ⅱ) and University Grants Commission-Special Assistance Programme)JNU funds to Sushil K Jha。
文摘The locus coeruleus(LC) is one of the essential chemoregulatory and sleep–wake(S–W) modulating centers in the brain. LC neurons remain highly active during wakefulness, and some implicitly become silent during rapid eye movement(REM) sleep. LC neurons are also involved in CO_2-dependent modulation of the respiratory drive. Acid-sensing ion channels(ASICs) are highly expressed in some brainstem chemosensory breathing regulatory areas, but their localization and functions in the LC remain unknown. Mild hypercapnia increases the amount of non-REM(NREM) sleep and the number of REM sleep episodes, but whether ASICs in the LC modulate S–W is unclear. Here, we investigated the presence of ASICs in the LC and their role in S–W modulation and the state transition from NREM to REM sleep. Male Wistar rats were surgically prepared for chronic polysomnographic recordings and drug microinjections into the LC. The presence of ASIC-2 and ASIC-3 in the LC was immunohistochemically characterized.Microinjections of amiloride(an ASIC blocker) and APETx2(a blocker of ASIC-2 and-3) into the LC significantly decreased wakefulness and REM sleep, but significantly increased NREM sleep. Mild hypercapnia increased the amount of NREM and the number of REM episodes. However, APETx2 microinjection inhibited this increase in REM frequency. These results suggest that the ASICs of LC neurons modulate S–W, indicating that ASICs could play an important role in vigilance-state transition. A mild increase in CO_2 level during NREM sleep sensed by ASICs could be one of the determinants of state transition from NREM to REM sleep.
文摘触脑脊液神经元(cerebrospinal fluid-contacting neurons,CSF-cNs)是一种分布于脑室、中央管、脑室周器及脑实质等处与脑脊液接触的特殊神经元。根据分布位置不同可将CSF-cNs分为室管膜上、室管膜下和远位CSF-cNs三类,不同部位的CSF-cNs分泌不同的神经递质。以往研究CSF-cNs多采用脑室注射辣根过氧化物酶标记的霍乱毒素B亚单位(cholera toxin subunit B labeled with horseradish peroxidase,CB-HRP)进行逆行追踪.