One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-des...One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-destructive testing method with potential applications for locating and monitoring fatigue cracks. This paper focuses on in-situ monitoring of structural health, specifically detection of small crack growth and crack initiation in structures using AE technology. A probabilistic AE-based model for small fatigue cracks was developed and the uncertainties of the model were estimated. The paper discusses the methodology used, experimental approach, results obtained and predictive models developed.The developed model can be used to evaluate the integrity of structures and assess structural health by estimating the probability density function of the length of detected cracks. The outcome of this research has significant potential to be used for in-situ monitoring and evaluation of structural integrity.展开更多
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
文摘One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-destructive testing method with potential applications for locating and monitoring fatigue cracks. This paper focuses on in-situ monitoring of structural health, specifically detection of small crack growth and crack initiation in structures using AE technology. A probabilistic AE-based model for small fatigue cracks was developed and the uncertainties of the model were estimated. The paper discusses the methodology used, experimental approach, results obtained and predictive models developed.The developed model can be used to evaluate the integrity of structures and assess structural health by estimating the probability density function of the length of detected cracks. The outcome of this research has significant potential to be used for in-situ monitoring and evaluation of structural integrity.
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.