期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Acoustic Prediction and Risk Evaluation of Shallow Gas in Deep-Water Areas 被引量:1
1
作者 YANG Jin WU Shiguo +7 位作者 TONG Gang WANG Huanhuan GUO Yongbin ZHANG Weiguo ZHAO Shaowei SONG Yu YIN Qishuai XU Fei 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1147-1153,共7页
Shallow gas is a potential risk in deep-water drilling that must not be ignored,as it may cause major safety problems,such as well kicks and blowouts.Thus,the pre-drilling prediction of shallow gas is important.For th... Shallow gas is a potential risk in deep-water drilling that must not be ignored,as it may cause major safety problems,such as well kicks and blowouts.Thus,the pre-drilling prediction of shallow gas is important.For this reason,this paper conducted deep-water shallow gas acoustic simulation experiments based on the characteristics of deep-water shallow soil properties and the theory of sound wave speed propagation.The results indicate that the propagation speed of sound waves in shallow gas increases with an in-crease in pressure and decreases with increasing porosity.Pressure and sound wave speed are basically functions of the power expo-nent.Combined with the theory of sound wave propagation in a saturated medium,this paper establishes a multivariate functional relationship between sound wave speed and formation pressure and porosity.The numerical simulation method is adopted to simulate shal-low gas eruptions under different pressure conditions.Shallow gas pressure coefficients that fall within the ranges of 1.0-1.1,1.1-1.2,and exceeding 1.2 are defined as low-,medium-,and high-risk,respectively,based on actual operations.This risk assessment me-thod has been successfully applied to more than 20 deep-water wells in the South China Sea,with a prediction accuracy of over 90%. 展开更多
关键词 shallow gas acoustic simulation experiment sound wave speed pressure coefficient risk evaluation
下载PDF
Arbitrary acoustic orbital angular momentum detection using dual-layer metasurfaces
2
作者 Zhanlei Hao Haojie Chen +4 位作者 Yuhang Yin Shan Zhu Yadong Xu Cheng-Wei Qiu Huanyang Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第6期106-112,共7页
Orbital angular momentum(OAM),with its unique physical properties and vast application prospects,has attracted widespread attention in various fields.Nonetheless,the development of valid and practical acoustic OAM det... Orbital angular momentum(OAM),with its unique physical properties and vast application prospects,has attracted widespread attention in various fields.Nonetheless,the development of valid and practical acoustic OAM detection methods continues to be a challenging endeavor.In this paper,we propose a novel construction method of dual-layer metasurfaces to achieve a doubleconversion process for the waveform reshaping and differentiated focusing of two-dimensional vortex sources with different OAMs.Specifically,by utilizing a concise formula,a one-to-one correspondence is established between the OAM of incident vortex waves and different imaging points.The fundamental principle of this special conversion relationship is rigorously constrained by the directional compensation of phase and the material parameters of dual-layer metasurfaces with different quadratic phase distributions.More importantly,the highly consistent results between numerical demonstrations and acoustic experiments further confirm the feasibility and effectiveness of the proposed OAM detection scheme.Our work provides a new perspective on the precise manipulation for the phase of vortex fields,holding potential applications in super-resolution imaging and the design of acoustic OAM-based devices. 展开更多
关键词 arbitrary acoustic OAM detection vortex waves dual-layer metasurfaces waveform reshaping differentiated focusing acoustic experiments
原文传递
The load criteria for ship mechanical noise prediction in low frequencies and experimental validation
3
作者 Xi-An Liu De-Qing Yang Qing Li 《Journal of Ocean Engineering and Science》 SCIE 2023年第3期278-293,共16页
The loading method of the external excitations generated by the equipment directly affects the predicted result of the mechanical noise which should be the same under different excitation forms for the given equipment... The loading method of the external excitations generated by the equipment directly affects the predicted result of the mechanical noise which should be the same under different excitation forms for the given equipment.In this paper,general load criteria are proposed to define forces/moments as the standard form and convert other forms of loads in the low-frequency domain.As the most typical form to charac-terize equipment excitation,acceleration load loading methods for different conditions are investigated.The equivalent formula between ideal accelerations and generalized forces establishes the first load cri-terion.The second load criterion is proposed to address the issue of an average acceleration loading,in which the phase and amplitude distribution are both absent,and cannot apply to the load identification.The upper and lower limits of the mechanical noise can be determined by the vibroacoustic transfer func-tion of the three load models,and the energy-averaged value is used to represent the mechanical noise.Furthermore,the third criterion is used to handle the case where the acceleration load is given by the results of a bench test.According to the equipment source descriptor invariance,the conversion method is achieved between the bench test and the real ship based on the transfer function of a load model,and the mechanical noise is predicted by an equivalent energy method.Finally,a three-parameter method to quantitatively evaluate the well-fitting of experimental and numerical results,and the load criteria are well validated by underwater acoustic experiments of an experimental model. 展开更多
关键词 Ships’mechanical noise Load criteria Vibroacoustic transfer functions Underwater acoustic experiments Accelerations load Three-parameter method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部